
Advanced Error Handler for LabVIEW Projects

Introduction
Handling the errors efficiently in the code is very important for success of any

software development project. Efficient error handling can drastically reduce
development time; and can make maintenance much more streamlined.

Many a times enough attention is not given to error handling in design as well as
development phases. The end result is unsatisfied end user because many often the
application crashes without giving any feedback to the end user.

Reasons behind little or no error handling are as follows

• During the design phase many times more emphasis is given to write
algorithms of the process. While considering the algorithms no or little
attention is paid towards exceptional conditions (e.g. if one is using USB
DAQ card for data acquisition then little attention is paid to “What will
happen if user plug out the USB card?”)

• If we go through book of any programming language, generally no
attention is paid towards error handling (Maybe because what they want to
teach us is syntactical stuff)

• Even if training sessions give stress on error handling, they fail to show
solid benefits obtained by error handling.

• In tight deadline situations, developer thinks he can save some time if he
can avoid some error handling stuff.

• Many Developers think that code Developed by them is perfect and they
can make no mistakes, so error handling is not part of their game.

• When problems start appearing developers concentrate only on removing
(or more preciously bypassing) the bugs which have been observed, at this
stage developers think its too late to apply error handling, often at this
time project is more than 90% complete and adding error handling may
mean major change in the code.

Why Error Handling is so much important

• If given proper consideration in design phase, error handling can save
hours of debugging

• Error handling makes application much more robust

• In case of problem application should attempt for recovery itself.

• Even if your application crashes it can be closed gracefully. (E.g. it can
pop up some message explaining the cause of crash etc.)

• Error handling can guide end user to diagnose the system on his own,
hence reducing your support cost.

• Error handling routines(more specifically error logs) can give you the list
of your most favorite mistakes (e.g. most of the times you forget to
generate required folder structure before creating file)

• Error handling provides systematic way to provide more data about bugs,
so it helps developer to remove bugs.

Expectations from error handler
Now if we need to apply error handling in each and every project day in and day

out. Then why it can’t be a set of routines which can be reused over and over.

What are the expectations from such error handler routines?

• These routines should be simple to use (should contain few interfaces)

• Learning curve for using these routines should be small

• These routines should serve us in every project and in every situation
without much customization

• These routines should provide systematic way to provide details about bug

• These routines should help developer to write routines for self recovery

• These routines should help end user to resolve the problem on his own

• These routines should be configurable to the highest extent

• These routines should never allow application to crash without giving any
feedback to the end user

• These routines should be capable of providing patches for application

Advanced Error Handler
Advanced Error handler is set of routines (VIs) which is developed to serve the

purposes mentioned above.

It provides a simple interface which needs almost no training

Advanced Error handler provides multiple ways to handle errors, which are as
follows

• Displaying the detail information about the error to the end user by means
of a dialog box

• Logging the error information along with a time stamp so that situation
can be analyzed later with more systematic approach

• In case of critical error; gracefully closing the application

• Attempting self recovery using custom routines and allowing patch
development using custom routines.

• Allowing developer (and end user; if developer wishes) to configure how
to handle errors

Even though above features are available, all features should not be used for each
and every error. E.g. you don’t want to log the cancel error (error generated due to cancel
button key press by the end user) in file. So developer should be able to configure (Yes
CONFIGURE, he should not write code for each and every error) how to handle each
error.

To incorporate error handling using advanced error handler developer needs to
use only two sub VIs from the library.

ErrorInit.vi
This VI initializes the error handling routine hence it should be called in the

beginning of the application. This routine loads the required files into the memory.

Once this VI is executed, Error handler is ready to handle the errors as per
configuration.

Error init loads following files into the memory

• Settings.ini: this file contains the information related to error handler
configuration (from where it should read the error handling configuration,
should end user be allowed to configure the error handling, where the
error information should be logged, what should be done if un-configured
error occurs etc.)

• Error description file: this file contains the information regarding how
each error should be handled

Errortrap.vi
This VI contains the error in and error out terminals, if the error in terminal gets

the error, then it looks up the configuration file and then it handles the error as per
configuration.

This VI should be dropped in the code at various places where code is expected to
trap the errors.

Following methods are possible if an error is trapped

• Show dialog: displays a dialog to the end user which specifies error code,
error description and VI hierarchy of occurrence of error.

• Log Error: write an entry to error log file which contains time stamp, error
code, error description, and VI hierarchy of occurrence of error.

• Abort application: (this method should be used only for critical errors)
displays a dialog to the end user specifying that due to critical error,
application needs to be closed down.

• Invoke routine: specifying the routines for this method runs the specified
routine(VI)

• Clear Error: this routine clears the occurrence of error, it should be used to
ignore Error, or clear error after successful recovery.

If un-configured error is trapped in this routine, this routine asks the end user to
configure how to handle this situation (this happens only if Unknown Err Dialog flag is
true in settings.ini. If this flag is false then default settings are used for error handling)

Error Editor.vi
Error editor is a user interface for editing the way errors are handled. Using this

interface user can add new error codes to the error description file or he can remove or
change existing error code methods.

System Requirements: Advanced Error Handler

Introduction
Advanced Error handler should be a set of easy to use VIs; which will help

developer to incorporate error handling in the project. These routines should be
developed in such a way that it should fit in every project’s error handling requirements
without customization.

These routines should also help developer to incorporate detailed error handling
routines (will be called as dynamic VIs) into software even after release.

Error Handler Requirements

Error Handling Methods
For each error code following error handling methods should be possible

• Displaying Dialog to show error code, error description and VI hierarchy.

• Logging error code, error description and VI hierarchy along with time
stamp

• Aborting application for critical errors

• Clear error options for ignoring errors

• Routine execution, i.e. dynamically running a VI which can handle the
error

Miscellaneous Features
• Above methods should be configurable separately for each error code

• In case un-configured error occurs user should be able to specify the
handling methods for it (This feature should be protected, and should be
exposed to end user only if allowed by the developer)

• There should be default method for handling the error

• There should be a user interface for editing the error handling methods

Support file requirements

Settings.ini
This file will store the configuration information about the error handler. The file

will be stored in standard ini format

This file must be located in the data folder (with name settings.ini) as this file will
be read in application using relative path.

The file will look like as follows

[Settings]
Err Desc Path=/C/ErrorDesc.txt
Log Path=/C/ErrorLog.txt
Unknown Err Dialog=TRUE
[ErrHandler]
Routine=/C/routine.vi
Show Dialog=TRUE
Log Error=TRUE
Clear After Handling=TRUE
Abort Application=FALSE

Error description file
This file will store the error handling configuration for every error code. The

information will be stored in tab delimited spreadsheet format.

File will have following columns in given order

• Error Code

• Show dialog

• Log error

• Clear Error

• Abort error

• Routine

For Boolean fields(Show dialog, Log error, Clear Error, Abort error) “True” and
“False” Strings will be used to convey state

The routine field will contain the path of dynamic VI; to keep this feature unused
routine field should be empty

This file can be placed anywhere on the disk with any name, but should be
referenced accordingly in settings.ini file

Error Log File
Error log file will log the errors (if configured accordingly) the log will be stored

in tab delimited spreadsheet format with following columns (In Given order)

• Date

• Time

• Error code

• Error description

• VI hierarchy

This file can be placed anywhere on the disk with any name, but should be
referenced accordingly in settings.ini file

Project structure
The project will have following folder structure

Documentation folder
This folder will contain the development documentation of the error handler

system

Development documentation
This folder will contain documents related to developed VIs, bug reports, To Do

list, checklist reports, schedule docs, status documents etc.

Help files
This folder will contain the help files for the developed application

Resources Folder
This folder will contain documents related to ideas, searched documents from web,

client etc.

Source code
This folder will contain actual source code of application

The source code will be stored in following format

• Main VIs: this folder will contain the VI which are expected to be used as
top level VIs (in this case these will be VIs which will be used as SubVIs
in other projects)

• Front Panels: Front panels are all those VIs which pops up the panel for
user interaction.

• Data: this folder will contain all the support files required for this project

• LV2G: this folder will contain all the VIs which will be used to store data
in memory in way similar to global variable.

• Strict type controls: this folder will contain strict type controls required in
the project

• VIs: this folder will contain all the remaining SubVIs required in this
project. These VIs will be further classified by type (e.g. file I/O, Array
handling, mathematical processing etc.)

User Documentation: Advanced Error Handler

Errorinit.vi

rror in (no error): error information from previous code, if it contains Error then
error ha

error status

Error

Error in (no error): if this r trap will look for
ethod and work accordingly.

or code, Error Description and VI

Critical Error Dialog
This Dialog is displayed for ves the abort warning to end

user and after acknowledgement quits the application.

E
ndler will not get initialized

Error out: will notify current

 Trap.vi

 terminal gets the error then erro
appropriate handling m

Error out: will notify current error status

ErrorDialog.vi
This VI pops up the Dialog to display Err

Hierarchy

critical error Abort. It gi

AddUnknownError.vi
This dialog is popped up when un-configured error occurs, and when user is

allowed to configure th

• he wish to see error
dialog every tim

• eck box if he wish to log error every
time particu

his check box to ignore this error

eld empty.

Wh t ini) will
get selected u

e un-configured errors.

Show Dialog: user should select this check box if
e particular error occurs

Log to file: user should select this ch
lar error occurs

• Clear Error: User should select t

• Abort: user should select this check box if particular is critical, and it
needs to close application

• Error Routine: user should type in the path of VI here which can handle
this error in more detailed manner, if there is no such routine available
then user should leave this fi

en his dialog box pops up the default options (as specified in settings.
 a tomatically.

Code Documentation: Advanced Error Handler

Error Trap.vi

VI Hierarchy

SubVI List

Error Description.ctl: D:\LabVIEW Applications\Inhouse\Error
Handler\Source Code\Strict Type Controls\Error Description.ctl

Operation.ctl: D:\LabVIEW Applications\Inhouse\Error Handler\Source
Code\Strict Type Controls\Operation.ctl

ErrDesc.vi: D:\LabVIEW Applications\Inhouse\Error Handler\Source
Code\LV2G\ErrDesc.vi

settings.vi: D:\LabVIEW Applications\Inhouse\Error Handler\Source
Code\LV2G\settings.vi

AddUnknownError.vi: D:\LabVIEW Applications\Inhouse\Error
Handler\Source Code\Front Panels\AddUnknownError.vi

ErrorDialog.vi: D:\LabVIEW Applications\Inhouse\Error Handler\Source
Code\Front Panels\ErrorDialog.vi

LogError.vi: D:\LabVIEW Applications\Inhouse\Error Handler\Source
Code\VIs\LogError.vi

Execute Routine.vi: D:\LabVIEW Applications\Inhouse\Error
Handler\Source Code\VIs\Execute Routine.vi

CriticalAbortDialog.vi: D:\LabVIEW Applications\Inhouse\Error
Handler\Source Code\Front Panels\CriticalAbortDialog.vi

ErrorInit.vi

Vi Hierarchy

SubVI List

Operation.ctl: D:\LabVIEW Applications\Inhouse\Error Handler\Source Code\Strict
Type Controls\Operation.ctl

settings.vi: D:\LabVIEW Applications\Inhouse\Error Handler\Source
Code\LV2G\settings.vi

ErrDesc.vi: D:\LabVIEW Applications\Inhouse\Error Handler\Source
Code\LV2G\ErrDesc.vi

Error Editor.vi

VI Hierarchy

SubVI List

Error Description.ctl: D:\LabVIEW Applications\Inhouse\Error Handler\Source
Code\Strict Type Controls\Error Description.ctl

Operation.ctl: D:\LabVIEW Applications\Inhouse\Error Handler\Source Code\Strict Type
Controls\Operation.ctl

ErrDesc.vi: D:\LabVIEW Applications\Inhouse\Error Handler\Source
Code\LV2G\ErrDesc.vi

AddUnknownError.vi

VI Hierarchy

SubVI List

Error Description.ctl: D:\LabVIEW Applications\Inhouse\Error Handler\Source
Code\Strict Type Controls\Error Description.ctl

Operation.ctl: D:\LabVIEW Applications\Inhouse\Error Handler\Source Code\Strict Type
Controls\Operation.ctl

settings.vi: D:\LabVIEW Applications\Inhouse\Error Handler\Source
Code\LV2G\settings.vi

ErrDesc.vi: D:\LabVIEW Applications\Inhouse\Error Handler\Source
Code\LV2G\ErrDesc.vi

CriticalAbortDialog.vi

VI hierarchy

ErrorDialog

Vi Hierarchy

Log Error.vi

VI Hierarchy

SubVI List

Operation.ctl: D:\LabVIEW Applications\Inhouse\Error Handler\Source Code\Strict Type
Controls\Operation.ctl

settings.vi: D:\LabVIEW Applications\Inhouse\Error Handler\Source
Code\LV2G\settings.vi

Create Directory Structure.vi: D:\LabVIEW Applications\Inhouse\Error Handler\Source
Code\VIs\File IO\Create Directory Structure.vi

StripNLevelsAndBuildPath.vi

VI Hierarchy

SubVI List

Create Directory Structure.vi: D:\LabVIEW Applications\Inhouse\Error Handler\Source
Code\VIs\File IO\Create Directory Structure.vi

Create Directory Structure

VI Hierarchy

Execute Routine.vi

VI Hierarchy

LV2G Details

ErrDesc.vi
Array of Error Description.ctl

Error Description control is cluster of

• Err Code (I32)

• Show Dialog (Boolean)

• Log (Boolean)

• Clear Err (Boolean)

• Abort (Boolean)

• Routine (Path)

Settings.vi
Settings is cluster of

• Err Desc Path (Path)

• Log Path (Path)

• UnknownErrAdd (Boolean)

• Err Methods (Cluster)

o Dialog (Boolean)

o Log (Boolean)

o Clear (Boolean)

o Abort (Boolean)

o Routine (Path)

Strict Type Controls Details

ErrDesc.ctl
Error Description control is cluster of

• Err Code (I32)

• Show Dialog (Boolean)

• Log (Boolean)

• Clear Err (Boolean)

• Abort (Boolean)

• Routine (Path)

Settings.ctl
Settings is cluster of

• Err Desc Path (Path)

• Log Path (Path)

• UnknownErrAdd (Boolean)

• ErrMethods(Cluster)

o Dialog (Boolean)

o Log (Boolean)

o Clear (Boolean)

o Abort (Boolean)

o Routine (Path)

Operation.ctl
Operation is enumeration with following details

Name Value
Get Value 0
Set Value 1
Read File 2
Write File 3

Contact Information

Vidisha Innovative Solutions

50, Jai-Jui, Mahesh Soc., Bibwewadi Pune-411037

Ph: +91-02024212661

web: www.vispune.com

Contact Person

Mr. Tushar Jambhekar

Cell: +91-9850611332

Email: tushar@vispune.com

mailto:tushar@vispune.com

	Advanced Error Handler for LabVIEW Projects
	Introduction
	Expectations from error handler
	Advanced Error Handler
	ErrorInit.vi
	Errortrap.vi
	Error Editor.vi

	System Requirements: Advanced Error Handler
	Introduction
	Error Handler Requirements
	Error Handling Methods
	Miscellaneous Features

	Support file requirements
	Settings.ini
	Error description file
	Error Log File

	Project structure
	Documentation folder
	Development documentation
	Help files
	Resources Folder
	Source code

	User Documentation: Advanced Error Handler
	Errorinit.vi
	Error Trap.vi
	ErrorDialog.vi
	Critical Error Dialog
	AddUnknownError.vi

	Code Documentation: Advanced Error Handler
	Error Trap.vi
	VI Hierarchy
	SubVI List

	ErrorInit.vi
	Vi Hierarchy
	SubVI List

	Error Editor.vi
	VI Hierarchy
	SubVI List

	AddUnknownError.vi
	VI Hierarchy
	SubVI List

	CriticalAbortDialog.vi
	VI hierarchy

	ErrorDialog
	Vi Hierarchy

	
	Log Error.vi
	VI Hierarchy
	SubVI List

	StripNLevelsAndBuildPath.vi
	VI Hierarchy
	SubVI List

	Create Directory Structure
	VI Hierarchy

	Execute Routine.vi
	VI Hierarchy

	
	
	LV2G Details
	ErrDesc.vi
	Settings.vi

	
	Strict Type Controls Details
	ErrDesc.ctl
	Settings.ctl
	Operation.ctl

	Contact Information

