

ROBO CYLINDER

Serial Communications Protocol

IAI Corporation

 1

1. Preface

This manual contains information pertaining to communicating serially
with the Robo Cylinder controller using IAI’s proprietary protocol
communications format. For information beyond serial protocol
communications, please refer to the “Robo Cylinder Operation Manual”

 Caution!

Using commands or strings not specifically described in this manual may
cause the system to behave improperly, potentially causing damage to
either itself or its environment.

 2

2. Communications Specifications

 Item Description
1 Electrical Specs EIA RS485
2 Synchronization Method Asynchronous
3 Connection Method Differential Line
4 Connector 6 pole modular
5 String Format ASCII
6 Baud Rate 38.4 Kbps *
7 Data Bits 8
8 Parity None
9 Stop Bit 1
10 Communication Method Half-Duplex

Note: The Robo Cylinder PC interface software supplies the recommended serial
communication cable and RS485àRS232 adapter.

* The default baud rate is 38.4 Kbps. However, communications speeds from 9.6
Kbps up to 115.2 Kbps may be obtained. Please contact Intelligent Actuator if
other speeds are required.

 3

3. Communication Procedure

 General procedure for communicating with the Robo Cylinder controller.

Start

Status Inquiry

Response OK?

Command

Response OK?

Status Inquiry

Complete?

Done

Y

N

Y

N

Y

N

Check to ensure good communications has
been established before proceeding.

Send desired command (be sure to home
axis before moving to point data)

If error occurs, be sure to check the error
code list to correct the problem.

If necessary, ensure the command was
completed successfully before proceeding.

 4

4. Communication Format

 4-1 General Information

1) All communication is via ASCII characters.
2) Data format is fixed at 16 characters.
3) Up to 16 axes can be linked serially. These are referred to via the axis

number in the data strings in hexadecimal format (0-F).
4) Each controller can contain up to 16 positions. These are referred to via

the position number in the data strings in hexadecimal format (0-F).
5) Communication integrity is checked via the Block Check Characters

(BCC). The BCC is obtained by first ignoring the STX, BCC and ETX
codes from the string and summing the remaining hexadecimal ASCII
codes (aside from the STX, BCC and ETX characters, the code is 12
characters long). Next, take the 2’s complement of the result. Finally, the
least significant byte of the 2’s complement is used as the BCC.

BCC calculation example:
[STX]0Q3010000000[BCC][ETX]
The sum of the hexadecimal ASCII codes of the 12-character data string is
as follows:

30H+51H+33H+30H+31H+30H+30H+30H+30H+30H+30H+30H = 265H
The 2’s complement 265H is D9B of which the least significant byte is
9B. Therefore the BCC is 9B.

* 2’s complement is performed by representing the data in 16 bit form,
flipping each bit (0à1, 1 à 0) and adding 1.

 5

 4-2 Data Strings

STX Axis# ‘n’ 10 continuous 0’s BCC ETX Status
Inquiry 02 6E 30 30 30 30 30 30 30 30 30 30 03

STX ‘U’ Axis# ‘n’ Status Alarms IN OUT ‘0’ BCC ETX Status
Response 02 55 6E 30 03

 BCC Data
*The first row of both the send and receive is in ASCII characters, the second is in
hexadecimal ASCII code. The actual strings sent are ASCII characters.
**Information regarding the contents of Status, Alarms, IN and OUT can be found in
section 4.3 Description of Codes.

STX Axis# ‘Q3’ ‘01’ Pos # 5 continuous 0’s BCC ETX Position
Move 02 51 33 30 31 30 30 30 30 30 30 03

STX ‘U’ Axis# ‘Q’ Status Alarms IN OUT ‘0’ BCC ETX Pos Move
Response 02 55 51 30 03

*The Pos# is in hexadecimal format representing position 0-15 as 00-0F.

STX Axis# ‘o’ Direction 8 continuous 0’s BCC ETX Home
Command 02 6F 30 37 30 30 30 30 30 30 30 30 03

STX ‘U’ Axis# ‘o’ Status Alarms IN OUT ‘0’ BCC ETX Home
Response 02 55 6F 30 03

*Direction determines whether the axis homes toward the motor or away from the motor.
Typical home direction (motor end) is 07, non-motor end is 08.

STX Axis# ‘a’ Position Data (HEX) ‘0’ BCC ETX Absolute
Move 02 61 30 30 03

STX ‘U’ Axis# ‘a’ Status Alarms IN OUT ‘0’ BCC ETX Abs Move
Response 02 55 61 30 03

*Position data is a hexadecimal representation of encoder pulses. Please see section 4.3
Description of codes for full explanation.

STX Axis# ‘v’ ‘2’ Velocity Acceleration ‘0’ BCC ETX VEL/ACC
Command 02 76 32 30 03

STX ‘U’ Axis# ‘v’ Status Alarms IN OUT ‘0’ BCC ETX VEL/ACC
Response 02 55 76 30 03

*For detailed information concerning the Velocity and Acceleration field data, please
refer to section 4.3 Description of Codes

 6

STX Axis# ‘q’ 0/1 9 continuous 0’s BCC ETX Servo

ON/OFF 02 71 30 30 30 30 30 30 30 30 30 03
STX ‘U’ Axis# ‘q’ Status Alarms IN OUT ‘0’ BCC ETX Servo

Response 02 55 71 30 03

*0/1 signifies servo OFF/ON where 1=ON, 0=OFF.

STX Axis# ‘m’ Position Data (HEX) ‘0’ BCC ETX Increment
Move 02 6D 30 30 03

STX ‘U’ Axis# ‘m’ Status Alarms IN OUT ‘0’ BCC ETX Inc Move
Response 02 55 6D 30 03

*Position data is a hexadecimal representation of encoder pulses from current location
(not from home). Please see section 4.3 Description of codes for full explanation.

STX Axis# ‘d’ 10 continuous 0’s BCC ETX Stop
Motion 02 64 30 30 30 30 30 30 30 30 30 30 03

STX ‘U’ Axis# ‘d’ Status Alarms IN OUT ‘0’ BCC ETX Stop
Response 02 55 64 30 03

*Motion stops regardless of position or previous command. This command may be used
in conjunction with an absolute or incremental move to jog the system.

STX Axis# ‘R4’ ‘000074000’ BCC ETX Position
Inquiry 02 52 34 30 30 30 30 37 34 30 30 30 03

STX ‘U’ Axis# ‘R4’ Position Data (HEX) BCC ETX Position
Response 02 55 52 34 03

*Position data is a hexadecimal representation of encoder pulses. Please see section 4.3
Description of codes for full explanation.

 7

The following commands work in conjunction to write data to the point table within the
controller. All 4 commands must be used in succession in order to write 1 piece of
information to an existing point in the point table (i.e. positional data for point number 1).
The address in the T4 command determines the type of data written (see section 4.3
Description of Codes for more details). When writing a new point to the point table, all 6
fields must be entered which means that a total of 14 commands must be sent to the
controller for each new point in the point table.

STX Axis# ‘Q1’ ‘01’ Pos # 5 continuous 0’s BCC ETX AààB
Transfer 02 51 31 30 31 30 30 30 30 30 30 03

STX ‘U’ Axis# ‘Q’ Status Alarms IN OUT ‘0’ BCC ETX AààB
Response 02 55 51 30 03

*The Pos# is in hexadecimal format representing position 0-15 as 00-0F.

STX Axis# ‘T4’ Address (HEX) ‘0’ BCC ETX Address
Allocation 02 54 34 30 03

STX ‘U’ Axis# ‘T4’ Address (HEX) BCC ETX Address
Response 02 55 54 34 03

*See section 4.3 Description of Codes for more details about the Address contents.

STX Axis# ‘W4’ Data ‘0’ BCC ETX Data
Write 02 57 34 30 03

STX ‘U’ Axis# ‘W4’ Address (HEX) + 1 BCC ETX Data
Response 02 55 57 34 03

*See section 4.3 Description of Codes for more details about the Data and Address
contents.

STX Axis# ‘V5’ ‘01’ Pos # 5 continuous 0’s BCC ETX BààA
Transfer 02 56 35 30 31 30 30 30 30 30 30 03

STX ‘U’ Axis# ‘V5’ Accumulated Number of Writes BCC ETX BààA
Response 02 55 56 35 03

*The Pos# is in hexadecimal format representing position 0-15 as 00-0F. The
Accumulated Number of Writes counts the number of times a field has been written.

 8

 4-3 Definition of Codes

1) Status Command

 The status command is as follows:

 [STX]+[Axis #]+[‘n’]+[‘0000000000’]+[BCC]+[ETX]

Character Description
STX Start Text character (Hex ASCII code: 02)

Axis # Axis # as specified on controller dipswitches (0-F)
BCC

(2 characters)
Sum Check characters (2’s complement of the sum
of the 12 data characters)

ETX End Text character (Hex ASCII code: 03)

2) Status Response:

 The status response is as follows:

 [STX]+[‘U’]+[Axis #]+[‘n’]+[STATUS]+[ALARM]+[IN]+[OUT]+[BCC]+[ETX]

STATUS
The status portion consists of 2 characters (1 byte) in hexadecimal format
representing the following table of bits (bit# 0 is least significant, bit# 7 most
significant):

Bit # Description
7 Command refusal (0=OK, 1=refused) If 1, see

alarm code
6 Not used
5 Not used
4 Not used
3 Home Status (0=Home not complete, 1=Home

complete)
2 Run Status (0=not ready to move, 1=servo on and

ready to move)
1 Servo Status (0=Servo Off, 1=Servo On)
0 Power Status (0=Power Off, 1=Power On)

 9

ALARM
The alarm portion consists of 2 characters (1 byte) in hexadecimal format. The
alarm meaning is shown in the table below:

Alarm Code Description Level
00 No Alarm
5A Receive Buffer Overflow
5B Receive Buffer Framing Error
5D Header Abnormal Character
5E Delimiter Abnormal Character
5F BCC Error
61 Received Bad Character

62-64 Incorrect Operand
70 Tried to move while run status was off
74 Tried to move during motor commutation
75 Tried to move while homing

W
A

R
N

IN
G

B1 Position data error
B8-B9 Motor commutation error
BB-BE Bad encoder feedback while homing
C0-C1 Excess speed / servo error

C8 Excess current
D0-D1 Excess main power voltage / over-regeneration

D8 Deviation error
E0 Overload

E8-EC Encoder disconnect
ED-EE Encoder error

F8 Corrupt memory

A
L

A
R

M

INPUTS/OUTPUTS
The IN and OUT portions of the response are both 2 characters (1 byte) in
hexadecimal format representing the PIO input and output status shown in the
following table of bits (bit# 0 is least significant, bit# 7 most significant).

 IN OUT

Input # Description Output # Description
7 Hold 7 Alarm
6 Not Used 6 Zone
5 Not Used 5 Home Complete
4 Start 4 Move Complete
3 Pos # 8 3 Pos # 8
2 Pos # 4 2 Pos # 4
1 Pos # 2 1 Pos # 2
0 Pos # 1 0 Pos # 1

 10

3) Position data
Position data is used in several commands including absolute move, position data
write, and position inquiry. The position data is in hexadecimal format
representing encoder pulses. For a system that homes to the motor end, the
equations necessary to convert from millimeters from home to encoder pulses is
as follows (please note that rounding errors may occur):

Pos data (pulses) = FFFFFFFF – (pos data (mm) X 800 (pulses/rev)/lead (mm))

 Therefore, for 0mm, the position data in the string is actually FFFFFFFF.

 For non-motor end homing, the equation becomes as follows:

Pos data (pulses) = Pos data (mm) X 800 (pulses/rev)/lead (mm)

For incremental moves, positive direction is represented by the equations shown
above. However, negative moves are represented by the equations for the
opposite homing direction. For example, a positive move of 0.5 mm for a 2.5mm
lead system that homes to the motor end would be ‘FFFFFF5F’. However, a
negative 0.5mm move with the same system would be ‘000000A0’.

4) Address

The address field occurs in strings such as Address Allocation and Data
Response. The address field identifies the point table field that is accepting the
data being written. The following list of addresses identifies those fields that are
currently available:

Address Location Field
00000400 Position data
00000403 Position band
00000404 Velocity
00000405 Acceleration/Deceleration
00000406 Push %
00000407 Push recognition time
00000409 Max Acc flag

More address locations will be added as they become available.

Position data and position band are in millimeters and follow the format shown
above in section 4. Velocity and acceleration data is formatted as shown below in
section 5. Push percentage is a hexadecimal representation of the push percentage
multiplied by the screw lead for that system. In other words,

 Push % data = Push percentage * screw lead (mm)

 11

Push recognition time is a hexadecimal representation of the time (in msec) that
the push force must be exceeded before the system records that the push is
complete. However, this value should not exceed 000000FF (or 255 msec).

The Max Acc flag value when the push % is zero is either 0 or 1. When the push
% is non-zero, the value is either 6 or 7 (where 6 means Max Acc=0, and 7 means
Max Acc=1).

5) Velocity and Acceleration

Velocity and acceleration values must be calculated according to the following
equations:

VEL(0.2rpm) = VEL(mm/s) X 300/lead(mm)
ACC(0.1rpm/msec) = ACC(G) X 5883.99/lead(mm)

Convert these values to hexadecimal before entering them into the string.

6) ASCII Chart (Hex)

 0 1 2 3 4 5 6 7 8 9 A B C D E F
0 NL SH SX EX ET EQ AK BL BS HT LF HM CL CR SO SI

1 DE D1 D2 D3 D4 NK SN EB CN EM SB EC à ß ↑ ↓

2 SP ! “ # $ % & ‘ () * + , - . /

3 0 1 2 3 4 5 6 7 8 9 : ; < = > ?

4 @ A B C D E F G H I J K L M N O

5 P Q R S T U V W X Y Z [\] ^ _

6 ` a b c d e f g h i j k l m n o

7 P q r s t u v w x y z { | } ~ DL

7) Actuator Screw Lead Chart

ACTUATOR TYPE RC SCREW

LEADS S5 S6 SS SM SSR SMR RS RM
L 3 3 3 5 3 5 2.5 4
M 6 6 6 10 6 10 5 8 SPEED
H 12 12 12 20 12 20 10 16

 12

5. Examples

The following examples contain strings that might be sent to the controller. In each case,
the string will use the following format:

 Chr$(02) + string + Chr$(03)

Where Chr$(02) is the STX character and Chr$(03) is the ETX character. These
characters are necessary for the string, but they are not characters that are printable.
Therefore, these representations will be used (coincidentally the same format as used in
many programming languages).

5-1 Block Check (BCC) Computation Examples

The following examples show sample strings and their associated BCC characters:

1) Status inquiry – 0n0000000000

First, add the hex ASCII codes of the characters:

 30+6E+30+30+30+30+30+30+30+30+30+30 = 27E

 27E(Hex)=1001111110(Bin)

Next take 2’s complement:

 1001111110 => 0110000010 (Bin) = 182 (Hex)

The BCC is then the last 2 characters of the result:

 BCC = 82

The resultant string becomes:

 Chr$(02) + 0n000000000082 + Chr$(03)

2) Position move – 1Q3010600000

BCC = 94

The resultant string becomes:

 Chr$(02) + 1Q301060000094 + Chr$(03)

 13

5-2 General Command Examples

1) Home

The following string is for homing a system addressed as axis #3 toward the
motor end:

Chr$(02) + 3o070000000077 + Chr$(03)

2) Velocity/Acceleration

For a system with a screw lead of 2.5mm that is addressed as #2, a velocity of
100mm/s and acceleration of 0.2G can be set by the following string:

Chr$(02) + 2v22EE001D602F + Chr$(03)

Where:
Vel = 100mm/s X 300 / 2.5mm = 12000 = 2EE0 (Hex)
Acc = 0.2G X 5883.99 / 2.5mm = 470.7192 = 1D6 (Hex)
BCC = 2F

3) Position Move

The following string will move a system addressed 0 to position number 11:

Chr$(02) + 0Q3010B0000089 + Chr$(03)

4) Absolute Move

For a system with a screw lead of 6mm that is addressed as #12 and is homed to
the motor end, the following string accomplishes moving to 56.80mm:

Chr$(02) + CaFFFFE26A00F6 + Chr$(03)

Position = 56.8mm X 800 / 6mm = 7573.33 = 1D95 (Hex)

However, since the system homes to the motor end, the position data that is sent
is:

FFFFFFFF – 1D95 = FFFFE26A

5) Incremental Move

To move the same system shown in the example above +100mm from its current
position, send the following string:

 14

Chr$(02) + CmFFFFE26A00F6 + Chr$(03)

Moving that same system –100mm from its current position requires the
following string:

Chr$(02) + Cm00001D95004D + Chr$(03)

6) Servo ON/OFF

To turn on the servo for a system addressed as #1, send the following string:

Chr$(02) + 1q10000000007D + Chr$(03)

To turn the same servo off, send the following string:

Chr$(02) + 1q00000000007E + Chr$(03)

7) Position Inquiry

To poll the current position of a system addressed as #0 that has been homed to
the motor end and has a 12mm lead, send the following string:

Chr$(02) + 0R40000740008F + Chr$(03)

In this case, the following response is of particular interest:

Chr$(02) + U0R4FFFF167AFE + Chr$(03)

Position = FFFF167A, therefore the actual position is:

(FFFFFFFF(Hex) – FFFF167A(Hex)) X 12mm / 800 = 896.72mm

 15

5-3 Point Table Write Examples

The following examples show how to write data to the point table.

1) Change Position Data in Existing Point in Point Table

 See section 4-2 for more information on these strings.

In order to set the point data for point# 14 to 32.45mm in a system addressed as
#5 with a 8mm lead screw that homes toward the motor end, enter the following
strings in succession:

Chr$(02) + 5Q1010E0000083 + Chr$(03)

Chr$(02) + 5T40000040008F + Chr$(03)

Chr$(02) + 5W4FFFFF352018 + Chr$(03)

Chr$(02) + 5V5010E000007A + Chr$(03)

Where the W4 command dictates the position data as follows:

FFFFFFFF – (32.45 X 800 / 8)(Hex) = FFFFF352 (Hex)

2) Enter New Point in Point Table

Using the same system as in the previous example and setting the point data the
same, set the velocity to 100mm/s, acceleration to 0.2G, push force to 0, position
band to 0.1mm and max acc flag to 0 with the following strings:

Chr$(02) + 5Q1010E0000083 + Chr$(03)

Chr$(02) + 5T40000040008F + Chr$(03)

Chr$(02) + 5W4FFFFF352018 + Chr$(03)

Chr$(02) + 5T40000040408B + Chr$(03)

Chr$(02) + 5W400000EA6064 + Chr$(03)

Chr$(02) + 5T40000040508A + Chr$(03)

Chr$(02) + 5W400000093084 + Chr$(03)

Chr$(02) + 5T40000040108E + Chr$(03)

 16

Chr$(02) + 5W4000000C007D + Chr$(03)

Chr$(02) + 5T40000040308C + Chr$(03)

Chr$(02) + 5W40000000A07F + Chr$(03)

Chr$(02) + 5T400000409086 + Chr$(03)

Chr$(02) + 5W400000000090 + Chr$(03)

Chr$(02) + 5V5010E000007A + Chr$(03)

Please refer to the address descriptions in item 4 of section 4-3 for further
information for each string.

5-4 Jog Examples

It is possible to jog the system using serial communications. Simply send the
system to one end of the stroke to start the jog, and then send a stop command to
end the jog.

1) Jog Forward

These strings will start jogging a system forward and then stop that jogging with
the stop command:

Chr$(02) + 0aFFFF65430025 + Chr$(03)

Chr$(02) + 0d00000000008C + Chr$(03)

2) Jog Backward

These strings will start jogging a system backward and then stop that jogging with
the stop command:

Chr$(02) + 0aFFFFFFFF00DF + Chr$(03)

Chr$(02) + 0d00000000008C + Chr$(03)

