
LAVA Feedback to the LabVIEW Development Team - NI Week 2002 Page 1 of 16 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

LAVA Feedback 
to the 

LabVIEW Development Team 
 

NI Week 2002



LAVA Feedback to the LabVIEW Development Team - NI Week 2002 Page 2 of 16 

Table of Contents 
 

Open Letter to the LabVIEW R&D Team.................................................................. 4 
Last Year’s List........................................................................................................... 6 
Priorities...................................................................................................................... 6 
1.0 Enhancements to G ......................................................................................... 6 

1.1 More native support for OOP (including "active objects") ........................ 6 
1.2 Introduce TRUE Object-Oriented extensions to G..................................... 6 
1.3 User-Defined Events................................................................................... 6 
1.4 Ability for G programmer to define their own variable and wire types ..... 6 
1.5 Conditional Node on Build Array Tunnel .................................................. 7 
1.6 Allow instantiation of controls and indications at run-rime ....................... 7 
1.7 LabVIEW Native Tree Control................................................................... 7 
1.8 Additional Array Functions ........................................................................ 7 

2.0 Enhancements to Editor .................................................................................. 7 
2.1 Finding *Write* Global and Local variable instances................................ 7 
2.2 Relink All Callers to SubVI........................................................................ 7 
2.3 New VI/Create Sub VI using a template..................................................... 8 
2.4 Support meaningful Probes on RefNum? wires (that show the Cluster 
instead of the RefNum? Hex value)........................................................................ 8 
2.5 Auto Add Shift Registers for Refnums on Loops....................................... 8 
2.6 Auto Add Shift Registers for Error In/Out on Loops ................................. 8 
2.7 Open VI in "safe" mode option................................................................... 8 
2.8 Control Option for Smarter Add-Input ....................................................... 9 
2.9 A "Run when loaded" VI option is needed................................................. 9 
2.10 Allow Menu-Launch VIs to not show their panels..................................... 9 
2.11 Show more than five icons across in This VI's SubVIs.............................. 9 
2.12 Make *Edit Format String* dialog tool available from all functions or VIs 
that use format strings............................................................................................. 9 

3.0 LabVIEW Data Tools ..................................................................................... 9 
3.1 Update App Note 154 ................................................................................. 9 
3.2 Publish Official ClassID and Data Type strings/enumerations .................. 9 
3.3 Better (required) tools for working with variants ..................................... 10 
3.4 Type Descriptor Parsing Tools (or equivalent functionality) ................... 10 
3.5 Polymorphic (Undefined) Data Type........................................................ 10 
3.6 Better XML Parsing.................................................................................. 10 

4.0 Source Code Control..................................................................................... 11 
4.1 Saving VI in text mode ............................................................................. 11 
4.2 Unnecessary recompilation of callers ignored as an actual modification. 11 
4.3 Integration with CVS ................................................................................ 11 

5.0 Call Library Functions .................................................................................. 11 
5.1 Call Library Functions Like property nodes............................................. 11 
5.2 Other Call DLL Issues .............................................................................. 11 
5.3 Call Library Function by Reference, which could push linkage errors to 
run-time................................................................................................................. 11 



LAVA Feedback to the LabVIEW Development Team - NI Week 2002 Page 3 of 16 

6.0 Tools for Tools Developers .......................................................................... 12 
6.1 Programmatic Interface to the Application Builder.................................. 12 
6.2 Add LabVIEW directory as possible root for VI search path................... 12 
6.3 Create a better way to generate custom palettes ....................................... 12 
6.4 Allow “App.MenuLaunchVI” to work for File (.\wizard) and Help (.\help) 
menu VIs as well as Tools menu (.\project) ......................................................... 12 
6.5 An application method to refresh menus .................................................. 12 
6.6 An application method to refresh palettes ................................................ 12 
6.7 Make App.MenuLaunchVI public ............................................................ 13 

7.0 Enhanced Hierarchy Window Features ........................................................ 13 
7.1 Replace All................................................................................................ 13 
7.2 Open diagram............................................................................................ 13 
7.3 Relink All.................................................................................................. 13 
7.4 Rename VI ................................................................................................ 13 

8.0 Visual Studio like Project View Window..................................................... 13 
9.0 Other Items.................................................................................................... 14 

9.1 Make the Array Size(s) and Dimension an array property ....................... 14 
9.2 Better Error Handling ............................................................................... 14 
9.3 Introduce a standard set of VIs for Publish/Subscribe.............................. 14 
9.4 Support bundling/unbundling for Cluster-typed RefNums?..................... 14 
9.5 Large Files support ................................................................................... 14 
9.6 VI.FP.Menu_Refnum VI Server Attribute................................................ 14 
9.7 Expose control properties and methods to ActiveX VI Server interface.. 14 
9.8 Add a digital display for refnums ............................................................. 14 
9.9 Allow to build application reusing previous tlb........................................ 15 
9.10 Option to show an icon on the Front Panel for Typedefs ......................... 15 
9.11 Build Custom ActiveX Server/Control..................................................... 15 
9.12 Support to build a LabVIEW Application as an NT/XP Service.............. 15 
9.13 Fix problems with occurrences ................................................................. 15 
9.14 Optional Scroll Bars on Clusters............................................................... 15 
9.15 Manage custom file extensions in a LabVIEW application...................... 16 



LAVA Feedback to the LabVIEW Development Team - NI Week 2002 Page 4 of 16 

Open Letter to the LabVIEW R&D Team 
 
LabVIEW R&D Team, 
 
Greetings form the LAVA Group!  For those who may not have heard of LAVA 
(LabVIEW Advanced Virtual Architects), we are strong NI supporters and long-time LV 
users/programmers who greatly appreciate the efforts that the LV R&D Team makes to 
create a truly unique, intuitive, innovative, and powerful programming environment that 
we all enjoy working with. 
 
In the Northern California Bay Area several of the long time LV users and consultants 
decided to get together in an effort to exchange ideas and discuss design patterns of how 
to use LabVIEW up to (and sometimes beyond) its limits—hence, LAVA was born.  We 
have been meeting quarterly for nearly 2 years now, and we have been pleased to see 
some of you at our gatherings. 
 
In preparation for NI Week and in an effort to help support the LV development team by 
providing prospective from "the field", the LAVA group tasked itself with compiling a 
list of suggested improvements that we would like to submit to the LV development 
team.  We hope that this list is received in the spirit intended--an effort by a senior user 
community to provide strong, quality, positive feedback to the LabVIEW development 
team to help the product grow and mature even more. 
 
Similar to the list we provided last year, our goal is to help the LV development 
team continue that tradition of continuous improvement and incorporation of novel 
ideas into LV, creating an even more awesome and useful tool than the wonderful one we 
all enjoy today.  Some suggestions in this year’s list are carryovers from last year’s list, 
and we have included that list as an attachment for reference.  However, this year we 
tried to stay away from “bug reports” and focus solely on new functionality. 
  
You may find some of these ideas and suggestions are already addressed in your current 
development.  Although many in the LAVA group are under NI non-disclosure 
agreements, not all attendees are.  Therefore, we decided not to remove items from 
the list if they were not generally known outside NI and/or non-disclosure agreements.   
Please do not let this diminish the impact or importance of the remaining suggestions. 
  



LAVA Feedback to the LabVIEW Development Team - NI Week 2002 Page 5 of 16 

We all recognize the NI Week schedule is very full and that the LV R&D Team is usually 
flooded with this type of information during the conference. However, if you would like 
clarification or further explanation of what was intended by a certain suggestion, or if for 
any reason would like to discuss the document, LAVA representatives attending NI 
Week would be delighted to help in any way we can. 
  
Keep up the fantastic work! 
   
Respectfully, 
The LAVA Group 
 
(in alphabetical order from the mailing list:  Adam Rofer; Alan Hilton; Ali AlHasan; 
Allen Smith; Andrew Johnson; Andy Cordes; Bhavnesh Patel; Brad Hedstrom; Brooks 
McDonald; Bryan Moore; Carl Thompson; Chris Lynch; Christophe Salzmann; Dana 
Redington; David DeLong; David Weisberg; Dirk DeMol; Dmitry Sagatelyan; Eric 
Lyness; Eric Low; Eric Nehrlich; Gary E. Helstrom; Gary Johnson; Grace Lim; Herman 
Griffin; Jack MacKrisken; James Kring; Jamie Smith; Jason Dunham; JC Flores; Jed 
Davidow; Jeff Long; Joe Damico; John Trager; Kevin E. Smith; Kevin Thompson; Kim 
Powers; Luckshman Parameswaran; Mark Borodkin; Mark Naley; Martin Vasey; Meg 
Kay; Michael Monroe; Michael Rushford; Michael Simoneau; Mike Zelinski; Otto 
Dalmady; Pablo Echavarria; Paul Daley; Peter Tam; Pinyen Chen; Ray Merrill; Richard 
Jennings; Rosie Abriam; Ryan Talbot; Scot Hannahs; Sorin Grama; Stan Case; Steve 
Jurovich; Thomas Clark; Tim Dense; TJ Robertson; Todd Gardner; Vance Socci; Veda 
Murthy; Wayne Larson) 
 
  
 
 
 



LAVA Feedback to the LabVIEW Development Team - NI Week 2002 Page 6 of 16 

 

Last Year’s List 
In an effort to avoid duplication, some items from last year’s list that are still not 
addressed in shipping versions of LV were not put on this year’s list, but deserve 
mention. Please reference the following sections from last year’s list:  Interoperability 2.2 
and 2.3; Security 3.1 and 3.2; New Concepts 4.1, 4.5, 4.7-9; General 5.5-10; Improved 
Debug Tools 6.1-4; Improved Editor Features 7.1-18; Undesired Behaviors 8.2-6; 
Examples and NI Provided G Code 9.1 and 9.2. 
 

Priorities 
Each suggestion in this year’s list is ranked with a priority of 1 (nice to have) to 5 (don't 
want to live without it).  The priorities represent “importance” in the eyes of the LAVA 
group, not necessarily urgency.  We recognize that the LV R&D Team may be able to 
implement some of these suggestions easier than others, and only the LV R&D team can 
best determine an implementation schedule that suits its development plan.  In each 
section the suggestions have also been sorted according to priority for easier 
interpretation. 
 

1.0 Enhancements to G 

1.1 More native support for OOP (including "active objects") 
Priority: 5 
See Section 1 from last year’s list.  Additionally, however, a consideration was 
discussed to allow for “active objects”.  That is to say that sometimes it is 
desirable to define an “object” by more than just its collection of attributes and 
methods—it’s purpose may require the object itself to be “alive”, executing 
according to its own timing, not just when calling code invokes an object’s 
method.  Monitoring objects and timer objects are good examples. 

1.2 Introduce TRUE Object-Oriented extensions to G.  
Priority: 5 
It should be integrated into the compiler. Currently, GOOP is not true OOP. 
Support Single Inheritance, Polymorphism (the To More Specific/Generic Class 
type has nothing to do with polymorphic VIs), and Data Encapsulation/Hiding. 

1.3 User-Defined Events 
Priority: 5 
Event Structure should be able to handle user/G programmer-defined Events.  

1.4 Ability for G programmer to define their own variable and wire types  
Priority: 4 
The LV environment is wonderful at helping G programmers write “correct” 
programs by enforcing strict type checking in its wires.  This type checking is 



LAVA Feedback to the LabVIEW Development Team - NI Week 2002 Page 7 of 16 

currently restricted to a variable’s data structure.  Take for instance a DBL that 
can be sub-typed as a physical quantity of Volts.  It would be invaluable to allow 
the G-programmer to control-click on the terminal, define an application relevant 
sub-typing (like “Pressure Transducer Reading”), and have the LV environment 
“keep track” of that variable’s additional (user defined) sub-typing to ensure no 
“cross-wiring” (without explicit type conversions/casting).  

1.5 Conditional Node on Build Array Tunnel 
Priority: 4 
This feature would allow selective construction/filtering of an array inside of a 
While or For Loop. The idea is to be able to add a Conditional Node to an auto-
indexing exit tunnel of a Loop. If the value is True then the element is appended 
to the array. This could be made fast, by only removing elements after the Loop is 
finished executing. Sum up the number of TRUE elements in the Boolean 
Conditional Node array and initialize an array of length = Sum(TRUE elements). 
Then fill the new array with the corresponding elements in the original, larger 
array from the auto-index node. 
 
“Conditional Node of Build Array Tunnel” works just like a Shift Register and 
Build Array Function inside true case of Case Structure. This would be 
tremendously helpful  

1.6 Allow instantiation of controls and indications at run-rime 
Priority: 4 
See item 4.3 from last year’s list. 

1.7 LabVIEW Native Tree Control 
Priority: 3 

1.8 Additional Array Functions  
Priority: 3 
¾ An Empty Array? function that returns TRUE when at least one 

dimension of the array is 0. 
¾ A Sorted Array Indices function that returns an array of indices to sorted 

elements instead of a sorted array. 
 

2.0 Enhancements to Editor 

2.1 Finding *Write* Global and Local variable instances 
Priority: 5 
It would be great to search for only the writeable globals (data sinks vs. data 
sources)  

2.2 Relink All Callers to SubVI 
Priority: 5 



LAVA Feedback to the LabVIEW Development Team - NI Week 2002 Page 8 of 16 

This would save one the hassle of right-clicking on every instance of a VI in a 
hierarchy in order to relink them all. Yes, this is a dangerous feature, but like 
Remove Bad Wires; it has a time and a place.  
 
One should be able to see this option (if bad linkage) by right-clicking on the VI 
in the *hierarchy window as well as in a Calling VIs diagram  

2.3 New VI/Create Sub VI using a template  
Priority: 4 
I don't use 'New VI' or ‘Create Sub VI from selected diagram code' because they 
create awful VI's. I always have to change the palette, add error in/out, and 
change the icon. It would be helpful if you could define a VI template as being the 
LabVIEW standard template for New VI's and if possible have the 'Create Sub VI' 
tool use this template as closely as possible (only deviate if the template doesn’t 
have enough input/outputs).  

2.4 Support meaningful Probes on RefNum? wires (that show the Cluster 
instead of the RefNum? Hex value) 

Priority: 4 
There is some debate on whether it is better to see the reference value or the data 
to which that reference refers.  These are necessarily mutually exclusive options; 
so, perhaps an implementation could be found that allows the user to specify 
when the probe is created which they need at that time.  

2.5 Auto Add Shift Registers for Refnums on Loops 
Priority: 4 
When a refnum is wired into a loop (for or while) a shift register should 
automatically be created (similar to how passing data out of a for loop 
automatically creates an autoindex node). Currently if you wish to properly 
refnums through loops you must manually create a shift register every time.  
 
If a shift register is not used a null reference will come out of the output tunnel if 
a For Loop executes zero times! This is bad.  

2.6 Auto Add Shift Registers for Error In/Out on Loops  
Priority: 4 
When an error cluster is wired into a loop (for or while) a shift register should 
automatically be created (similar to how passing data out of a for loop 
automatically creates an autoindex node). Currently if you wish to properly 
propagate errors through loops you must manually create a shift register every 
time.  

2.7 Open VI in "safe" mode option 
Priority: 4 
Open without running any code (e.g. "Run when Opened" and CINLoad()) to 
examine a VI from untrustable source.  



LAVA Feedback to the LabVIEW Development Team - NI Week 2002 Page 9 of 16 

2.8 Control Option for Smarter Add-Input 
Priority: 3 
A build array node could have any number of inputs, wired or unwired.   If one 
were to hover over any portion of the build array node and presses the <CRTL> 
key, an additional input terminal would be added (up/down arrows) by growing 
the build array node up and down equally. The position of the wiring tool after the 
node is grown to include the new input terminal defines the position of that new 
terminal. Existing terminals are moved up or down (up arrow by wires) as the 
new terminal displaces them. The new terminal always which remains under the 
wiring tool as it moves up and down over the node.  If the user wires to the new 
terminal it remains, but if the user releases the <CRTL> key the node reverts back 
to its original size. 

2.9 A "Run when loaded" VI option is needed 
Priority: 3 
This would allow a VI to run without having its panel opened  

2.10Allow Menu-Launch VIs to not show their panels 
Priority: 3 
VIs launched from the Tools, Help, or File menus should be allowed to not show 
their Front Panels. This is different than the ability to open as reentrant because 
the menu launch feature does not have this option.  

2.11Show more than five icons across in This VI's SubVIs  
Priority: 3 
Should be very simple to add this feature, it's unfortunate that it has not been 
updated now that people are writing complex programs with hundreds of subVIs.  

2.12Make *Edit Format String* dialog tool available from all functions or 
VIs that use format strings 

Priority: 2 
For example, the Array to Spreadsheet String and Spreadsheet String to 
Array functions, and the Write to Spreadsheet File.vi and Read from 
Spreadsheet File.vi VIs. Yes, it is probably tricky for NI to add it to VI's that use 
format strings, but it should be a piece of cake to add it to functions.  

 

3.0 LabVIEW Data Tools 

3.1 Update App Note 154 
Priority: 5 
This should be updated when new data types are added to LabVIEW. It is 
currently lacking variants 0x53, waveforms 0x54, and refnums, 0x70. 

3.2 Publish Official ClassID and Data Type strings/enumerations  
Priority: 5 



LAVA Feedback to the LabVIEW Development Team - NI Week 2002 Page 10 of 16 

Many developers create their own enumerated constants and their code is then not 
interchangeable. There are a lot of wasted, duplicated efforts here. LabVIEW 
should ship with a VI or Object Attribute that outputs a string or enumeration of 
the *ClassName? as well as the ClassID.  

3.3 Better (required) tools for working with variants 
Priority: 5 
These should be like what Jim, Mike and Mark showed at the last LAVA meeting.  

3.4 Type Descriptor Parsing Tools (or equivalent functionality) 
Priority: 5 
There should be tools such as:  
 

• Get Enumeration names from Type Descriptor Array  
• Get Elements from Cluster Data/Type Descriptor  
• Get # Elements in Cluster from Type Descriptor  
• Get Elements from Array Data/Type Descriptor  
• Get # Elements in Array from Type Descriptor (note: actually, the number 

of elements of an array is not stored in the type descriptor but in the 
flattened data. JPD)  

3.5 Polymorphic (Undefined) Data Type  
Priority: 5 
A polymorphic data type could be wired to polymorphic inputs of LabVIEW 
primitives or other polymorphic typed inputs (controls) of SubVIs. It could then 
be used as a terminal in the connector pane of a VI. Its type would be defined at 
edit-time when it is used as a subVI and the parent wires a strict type into it and 
that type is compatible with the primitive wired to the Polymorphic control.  
 
The usefulness of this idea is that you can create "true" polymorphic VIs in 
LabVIEW. It can be frustrating to use LabVIEW's present polymorphic VI 
"wrapper" around code.  Especially where the only difference between several 
polymorphic VI members is the data type of a control that is wired up to a 
polymorphic input of a LabVIEW primitive in the diagram in *exactly* the same 
way as all the other polymorphic VI members.  

3.6 Better XML Parsing  
Priority: 4 
Although Flatten to XML and Unflatten from XML functions showed up in 
LV6.1, the implementation does not allow LV users to take advantage of one of 
the major reasons why developers would want to use XML, namely 
“interpretability”.  The Unflatten from XML function mandates that ALL data 
elements MUST be in the XML string otherwise it throws and error.  This makes 
it no better than the Unflatten from String functionality.  The behavior should be 
to “interpret” the XML string and extract the desired data from it.  For instance it 



LAVA Feedback to the LabVIEW Development Team - NI Week 2002 Page 11 of 16 

should use the “type” input as the data structure and default values, which would 
then be replaced by any matching content from the XML string. 

4.0 Source Code Control 

4.1 Saving VI in text mode 
Priority: 5 
Without compiled code for easier integration with line based SCC software. 

4.2 Unnecessary recompilation of callers ignored as an actual modification  
Priority: 5 
An alternative to the "recompilation" SCC control problem might be to have an 
option to save a VI with no object content (i.e.--only "source code"--front panel 
and diagram)  

4.3 Integration with CVS  
Priority: 4 
Many developers are using CVS.  This is definitely true with the Open Source 
community that is using SourceForge.net CVS repository services. 

 

5.0 Call Library Functions 

5.1 Call Library Functions Like property nodes  
Priority: 4 
Property nodes are a perfect combination of icon and text with clear meaning to 
almost any level of programmer. The call library node’s icon has little meaning 
and all the configuration data is hidden and unprintable from within LabVIEW. 
Call library nodes should be made to look more like property/invoke nodes, with 
configuration/parameter information visible on the block diagram.  

5.2 Other Call DLL Issues  
Priority: 4 
Make it easier to change the DLL path in a CLN when many nodes in memory 
use it. Currently in 6.0, if you change the path to a DLL when many CLN use it, it 
always reverts to the one in memory, without message. And the DLL file stays 
reserved as long as the CLN are in memory so it can't be replaced on file after 
recompilation unless VIs are removed from memory. The Open/Close DLL 
suggestion, mentioned below, would solve that.  

5.3 Call Library Function by Reference, which could push linkage errors to 
run-time 

Priority: 3 
I want to open a reference to a DLL, based on a path argument, on disk at run-
time. This would work similar to the Call By Reference. This would push linking 
errors to run-time, instead of at edit time. I am doing development on a PC for a 



LAVA Feedback to the LabVIEW Development Team - NI Week 2002 Page 12 of 16 

project that will run on a Unix system and makes hundreds of calls to a Shared 
Object file. It takes 5 minutes just to open my project because LabVIEW keeps 
searching for the .so file.  
 

6.0 Tools for Tools Developers 

6.1 Programmatic Interface to the Application Builder  
Priority: 5 
No user should be required!  Always build a programmatic interface to a tool first, 
and then build the user interface. 

6.2 Add LabVIEW directory as possible root for VI search path 
Priority: 5 
In addition to <vilib>, <userlib> root paths, add <labview> so that we can form 
search paths from LabVIEW directory such as <labview>\project\mytools\* or 
<labview>OpenG.lib\* 

6.3 Create a better way to generate custom palettes 
Priority: 5 
.mnu files and the palette editor are very hard to use. It would be nice if there 
were a way of overriding only portions of a default palette rather than having to 
override an entire default palette. It would also be nice to have a way to 
programmatically modify the palettes (.mnu).  

6.4 Allow “App.MenuLaunchVI” to work for File (.\wizard) and Help 
(.\help) menu VIs as well as Tools menu (.\project) 

Priority: 5 
For example, I have a class of VIs that I would like to move from the Tools menu 
to the File and Help menus but I cannot, because they use the 
App.MenuLaunchVI property to operate on the VI from which they are launched. 
For example:  
Rename VI As… Does a programmatic Save As (rename) and then deletes the 
original on disk  
Open (Suppress Run When Opened)… Suppresses the run when opened VI 
attribute so that a VI may be opened for editing  
Save and Open Copy As… Saves a copy of the VI and then opens the copy so 
that one doesn’t accidentally edit the original.  

6.5 An application method to refresh menus 
Priority: 3 
When a tool is installed in .\project (or .\help or \wizard), the Tools menu is not 
refreshed until LabVIEW is relaunched. Provide a method to refresh the menus.  

6.6 An application method to refresh palettes  
Priority: 3 



LAVA Feedback to the LabVIEW Development Team - NI Week 2002 Page 13 of 16 

When a VI is installed in a directory that is synchronized with a palette, it is not 
refreshed until LabVIEW is relaunched. Provide a method to refresh the palettes. 

6.7 Make App.MenuLaunchVI public 
Priority: 2 
It is currently exposed in the web-publishing tool, but it would be nice to make 
this public.  
 

7.0 Enhanced Hierarchy Window Features 

7.1 Replace All 
Priority: 4 
Should work like the right-click replace feature available on the diagram 

7.2 Open diagram 
Priority: 4 
ctrl-dbl-clicking a VI icon in the hierarchy window should open a VI's diagram, 
like it is already done when ctrl-dbl-clicking a subVI icon in diagrams.  

7.3 Relink All 
Priority: 4 
Right-clicking on a VI icon in the hierarchy window should show an option for 
Relinking all instances in memory that require relinking. The Hierarchy window 
should show whether some instances of a VI require relinking.  

7.4 Rename VI 
Priority: 3 
One should be able to rename a VI in memory via the File menu as well as by 
right-clicking on it from the hierarchy window. A rename should rename the VI 
on disk, optionally deleting the original.  

8.0 Visual Studio like Project View Window 
Priority: 5 
In Visual Studio you have a project window where you can traverse into Objects and 
access member functions/variables. A window like this which allows you to traverse 
into directories (or objects as we start going that direction) would be very helpful. 
From such a window you could add all kinds of features, such as right clicking on a 
VI and renaming it (since all VI's in the project are in the project window you can 
load them before renaming the VI to ensure a successful update). Another feature 
might be to right click on a directory/object and "Add New VI" to this 
object/directory; when this happens you can load a VI template which can be defined 
for every object/directory or just a globally defined VI template.  

 
Such a window will provide us with a view of how our code is organized. It will 
encourage us to organize our code into appropriate directories and name our VI's 



LAVA Feedback to the LabVIEW Development Team - NI Week 2002 Page 14 of 16 

well. It will also be a good starting point to begin looking at directories as objects 
instead of just collections of VI's. From there it will be a natural transition to Object 
Oriented programming. 

 

9.0 Other Items 

9.1 Make the Array Size(s) and Dimension an array property 
Priority: 5 
When using array refnums, the only way to recover the array size(s) is to parse the 
flattened data, which involves making a copy of the array data. That is inefficient 
for large arrays. Size(s) should be an array property.  It would also be nice to have 
the dimension of the array available as a property. 

9.2 Better Error Handling  
Priority: 5 
Error Handling: support a better way of sharing Error Code Spaces between 
LabVIEW/Toolkits/Libraries/Other Development Systems. Something along the 
lines of Dmitry Sagatelyan’s “Design Pattern for Error Handling in LabVIEW 
Applications”.  

9.3 Introduce a standard set of VIs for Publish/Subscribe 
Priority: 5 
This is much better than forcing users to use Queues to implement such 
functionality since most people would do it in different ways.  

9.4 Support bundling/unbundling for Cluster-typed RefNums? 
Priority: 4 

9.5 Large Files support 
Priority: 3 
Support handling of very large files (over 2 Gb in size) in LabVIEW.  

9.6 VI.FP.Menu_Refnum VI Server Attribute 
Priority: 3 
A VI's front panel menu refnum should be available from the VI property node--it 
currently is not. 
 

9.7 Expose control properties and methods to ActiveX VI Server interface. 
Priority: 3 
The ActiveX interface currently does not expose more than the first couple Layers 
of VI server.  

9.8 Add a digital display for refnums 
Priority: 3 



LAVA Feedback to the LabVIEW Development Team - NI Week 2002 Page 15 of 16 

9.9 Allow to build application reusing previous tlb 
Priority: 3 
When rebuilding an application that is ActiveX enable, new GUID and tlb is 
generated each time. Allow to reuse a tlb so that we can cope with a unique 
ActiveX server. Also, when uninstalling an application, unregister the ActiveX 
server.  

9.10Option to show an icon on the Front Panel for Typedefs 
Priority: 3 
A user-set option to show an icon on the Front Panel instead of the actual 
Control/Indicator instance for a given Typedef. Very useful for nested typedefs. 
Same for constants on the diagram—would save a lot of diagram space when one 
does a Bundle by Name.  

9.11Build Custom ActiveX Server/Control 
Priority: 3 
Allow to build a set of VIs as an ActiveX Control, a COM/DCOM component, an 
Enterprise JavaBean? AND/OR as a platform-independent LabVIEW-specific 
Component.  

9.12Support to build a LabVIEW Application as an NT/XP Service 
Priority: 3 

9.13Fix problems with occurrences 
Priority: 3 
Occurrences have been a problem for me for some time.  I mentioned this in some 
info-labview discussions, which you can find at: (http://messages.info-
labview.org/2000/05/01/03.html) 
 
The first problem is that I think the occurrences need to be resettable from run to 
run. Everyone argues that they are like a constant but the essence of these 
structures is the time that the occurrence is set and it is impossible to tell all wait 
on occurrence functions to ignore any occurrences before some predetermined 
time (like the last time the code was started.) I would prefer a "reset occurrence" 
function that would allow me to 'erase' all previous set occurrences at the start of a 
run so that occurrences set in a previous execution would not interfere with the 
current one. 
 
Another problem is that the wait on occurrence occasionally misses a set 
occurrence completely.  This is clearly a bug in the occurrence code.  I have seen 
this numerous times and it has caused enough trouble that I sworn off using 
occurrences and gone back to polling. 

9.14Optional Scroll Bars on Clusters 
Priority: 2 



LAVA Feedback to the LabVIEW Development Team - NI Week 2002 Page 16 of 16 

This would enable resizing very large clusters so that they don't take up much 
front panel space, but still allows viewing the hidden data within them.  

9.15Manage custom file extensions in a LabVIEW application 
Priority: 2 
When a user double-clicks a file of a certain extension, it would be nice to have 
tools to register and handle that file within a built executable, or even in the 
development environment. The Event structure would be a good place to forward 
and intercept these Explorer events.  
 


