
 1 of 6 August 8, 2001

LAVA Group’s Suggestions for LabVIEW Improvements

1. GOOP-Related
1.1. Better LV-native support for EVENT-driven OO programming in general.
1.2. Provide an “Object Browser” to interactively browse objects in existence (similar

to GOOP Wizard Class Inspector, but covering ALL classes). This could be
linked to improved Probe functionality, so that probing a Refnum wire could
highlight the instance of the object in the Object Browser where it then may be
possible to view the values of the object’s attributes.

1.3. Implement Refnum Controls that allow for the selection of a single object
instance from drop-down list of all objects of that class in existence (similar to
the new VISA Session control).

1.4. Find a way to implement class inheritance in LV objects (for both methods and
attributes). In essence, making a LabVIEW++ environment.

2. Interoperability
2.1. Provide native XML support and utilities in LV (e.g.-G Data to XML and XML

to G Data).
2.2. Provide full DOM parser support for XML documents.
2.3. Interface with other external environments (e.g.—like JAVA Messaging Service,

JMS).
2.4. Ability to compile a VI as an ActiveX control (or platform specific equivalent for

non-Windows O/S), embeddable in other non-LV applications.

3. Security
3.1. Add SSL encryption security into Data Socket, LV Web Server, and LV VI

Server functionality.
3.2. Provide LV-API for user-login utilities with support for multiple user levels.

4. New Concepts
4.1. Allow for fast OO DB to provide PERSISTENT storage (configuration data) of

attributes for application objects (e.g.—attributes of front panel objects:
Visible?, Position, Caption, etc.). This will enable data-driven, configurable
applications, as well as better recoverability from “crashes”.

4.2. Allow for saved “Workspaces” or “Projects” to save and recall the state of all
VI’s, their window positions, running state, etc. This concept can be expanded to
allow for multiple simultaneous workspaces and leads to the possibility of having
different versions of the same named VI in the different workspaces.

 2 of 6 August 8, 2001

4.3. Ability to dynamically create controls and indicators at run-time and place them
on a VI’s front panel. Manipulation of the control/indicator in question would
only be possible by reference using Property and Invoke Nodes.

4.4. “Windows-In-Windows” – the ability to embed the front panel of a VI into the
front panel of another. This effectively makes it possible to have custom controls
that have G code behind them, and is similar to the concept of ActiveX control
containers, but pure G.

4.5. Programmatically controllable “Macro Recording” (analogous to Excel Visual
Basic for Automation) where the sequence of a user’s actions can be “played
back” (e.g.—Controls clicked, text entered, menu items selected, etc.).

4.6. Provide a way to programmatically call different DAQ configuration files, like is
possible in MAX (and BridgeVIEW with tag files).

4.7. Diagram constants that can be referenced anywhere on a vi’s diagram, providing
analogous capability to a #DEFINE macro in C. For example, a LV
programmer, in a motion control app, may want to reference the encoder counts
(in lines per inch) of a motor axis several places in a vi. It may be desired to not
have this quantity modifiable by the end user, but if the encoder resolution
changes, the programmer should only have to change 1 constant to update the
entire vi (rather than search the vi’s diagram for related constants, and have to
make numerous corresponding changes).

4.8. The addition of radix-like portion of a String control/indicator/constant to show
the display format (e.g.—normal, slash codes, hex, password, etc.).

4.9. Providing an easier (and more usable) way to “comment out” LV code. Many
programmers already know to use a Case Structure with a boolean constant
connected to the Selector terminal to accomplish this; however the compiler will
still complain about broken wires and “unrunnable” code in the “commented-
out” case that is specifically intended NOT to run.

4.9.1. Closely related to this (but not necessarily the same), would be the ability
to “Ignore This Case/Frame” of a Case or Sequence Structure. This would
mean that the compiler would disregard the contents of that Case/Frame, and
it would never be executed at run-time.

4.10. Provide for “events” associated with front panel controls (perhaps run
“call-back vi’s whenever the user accesses a control, analogous to CVI call-back
functions).

5. General
5.1. A VI’s Menubar refnum should be available from the VI Property Node.
5.2. Better run-time localization support for displaying appropriate labels/captions

based on a “global” language setting.
5.3. Include “Break” functionality in a For Loop.
5.4. Build an optional “Wait ms” into the corner of every loop where the timer value

can be changed in Edit mode.
5.5. Provide programmatically selectable option for Controls and Indicators to have

appearance and behavior of native OS platform. For example, making selections

 3 of 6 August 8, 2001

in a LV lisbox (shift-click) is different than working with all other Windows
listboxes (control-click).

5.6. Make it possible to compare 2 VI’s with the same name from different
directories.

5.7. Add support for “collapsible” menus like those in Office 2000 applications.
5.8. Add Error In and Error Out terminals to LV primitives like Wait ms to allow for

data dependency and minimize the need for Sequence Structures to force order of
operations.

5.9. Allow X-Y and Waveform Graph controls to accept data input from the front
panel. In early versions of LV (< v2.52) the user could <ctrl>-draw with the
mouse (the cursor would become a pencil) to enter data into a graph control.

5.10. Having an intelligent mechanism to set the number of significant figures
(not just precision) for a numeric control/indicator (like the old Fortran "G"
format). The only way to do that now is by making G code that looks at the
value, along with the intended number of significant figures, does a bunch of
log/exponent calculations with some heuristics, and then sets the precision
property on the control/indicator. Although, the “E” notation basically does this,
there are some applications where most operators do not understand the E
notation and it is inappropriate.

6. Improved Debug Tools
6.1. Ability to select a wire and somehow trace its dependency throughout the entire

VI hierarchy.
6.2. Better / more configurable Probes:

6.2.1. Ability to INSERT a value onto a wire when debugging.
6.2.2. Probes with “Code” behind them, so the LV programmer/user can specify

the debug behavior.
6.3. Conditional Breakpoints—break only if value is outside a specified range.
6.4. Better documentation of advanced debug tools.

7. Improved Editor Features
7.1. As a general rule if multiple objects are selected, and an edit is applied, all

selected objects should exhibit corresponding changes. As a few limited
examples:

7.1.1. When selecting several Front Panel Objects and applying an attribute
change, that change should be applied to all selected Front Panel Objects
(e.g.—“Advanced Hide Control” would hide ALL selected
controls/indicators and “Visible Label” would hide/show labels of ALL
selected control/indicators).

7.1.2. When selecting several Front Panel Objects and resizing one, each
selected object would be resized proportionally.

 4 of 6 August 8, 2001

7.1.3. When selecting several Property Nodes on a diagram and changing the
attribute selection from A to B, all selected Property Nodes with unwired
terminals of attribute A should be changed to B.

7.1.4. When selecting several Property Nodes on a diagram and expanding a
node to add terminals, the same number of terminals should be added to all
selected Property Nodes.

7.2. Somehow indicate on a case structure, sequence structure, etc. when diagram
objects are “hidden” (i.e. outside the bounds of the case or frame). This would
essentially be a graphical indication on the diagram of the same information that
is already displayed in the Error List box as a hidden object Warning.

7.3. Ability to show wires hidden behind VI’s and other diagram structures.
7.4. Be able to resize objects using cursor keys.
7.5. Implement the inverse of “Make Space” (Control-Drag on diagram)—perhaps

Shift-Control-Drag could be used to “Remove Space”.
7.6. “Re-wiring” functionality—perhaps Control-Click on a wired terminal with the

Wiring tool could detach the wire from that terminal and make it available to be
rerouted somewhere else.

7.7. “Wire Swapping” functionality—perhaps after starting the “Re-wiring”
(described above), if the programmer Control-Clicks on a second wired terminal,
the two wires would be swapped in their connections to their respective
terminals.

7.8. Make auto-wiring/re-linking/replacement more intelligent. Auto-(re-)wired
wires should connect only to terminals of appropriate datatypes (not just to
“blindly” mapped terminal numbers).

7.9. Be able to copy and paste LV code from one instance of a LV development
environment into another (put the LV code/objects information into the system
clipboard, not just a bitmap image).

7.10. When using the Property Node to access a reference to an object in that
vi’s object hierarchy, allow access to all objects directly without having to use
other Property Nodes to descend down the hierarchy. For example, this could
work similar to how the Unbundle By Name handles sub-clusters (i.e. [<level 1
object sub-class>:<level 1 object name>] . [<level 2 object sub-class>:<level-2
object name>] . […]).

7.11. Similar to the concept above for obtaining an object reference, it would be
nice to have some type of textual “dot-notation” descriptors that could be used to
obtain references to objects.

7.12. Have a way to auto-wire (duplicate wiring) from one case in a case
structure to all other cases with unwired output tunnels. Quite often data needs to
be wired straight through a case structure with many cases (i.e. 30+), because
only a few cases actually operate on that data. If a new data element is wired
straight through the case, a new output tunnel is created, and then the input must
be wired to the output tunnel manually for each and every case; it would be very
helpful to automate this.

7.13. Resizeable locals and globals to help manage their footprint on the
diagram—perhaps with a “size to text” feature.

 5 of 6 August 8, 2001

7.14. A large number of applications require right-justified numbers. It would
be nice to have an easier way to right-justify numeric controls/indicators (while
maintaining left-justified labels/captions)—perhaps a preference setting for
“right-justified numerics by default”.

7.15. A global “Find and Replace” feature for LV objects as well as text.
7.16. Add the features “Save As . . .” and “Replace . . .” to the pop-up menu

available in the Hierarchy Window. Replacing from the Hierarchy Window
should replace all instances where that VI is called as a sub-VI.

7.17. When Replacing from the diagram, it would be nice to have a list of items
used in previous, recent replacements, similar to the concept of the "Recently
Opened Files" submenu.

7.18. Having a “Grid” (like very early Mac-only versions of LV) available on
front panels and diagrams to help with alignment and visual layout.

7.18.1. Allow for preferences to Hide/Show Grid.
7.18.2. Allow setting for Grid Resolution (e.g. – 0.1in, 0.25in, 10pxls).
7.18.3. Have the ability to “Snap Objects to Grid”.

8. Undesired Behaviors
8.1. When duplicating a case or frame, terminals are “copied and pasted” as new

terminals. It would be preferable to have the terminals become local variables
referenced to the original terminal.

8.2. The Undo/Redo application menu items should be available in a built application
to work on user data manipulations.

8.3. Enhance Bug Reporting using recognition as incentive. National Instruments
benefits greatly when people take the time to report and explain a bug to an AE.
So, it would be beneficial for NI to give some reason to the developer for the bug
report. This may be as simple as noting that this CAR was started by Joe
Developer, as is already shown in NIs database.

8.4. In LabVIEW 6, it has been widely observed that there are a significant amount of
“Insane Object” errors. This appears quite often when employing typedefs
within clusters and using Unbundle By Name on the diagram. It is VERY
DIFFICULT to know which is the offending object; on a complex diagram this
usually amounts to a tedious trial-and-error task. This error is immensely
troublesome to the programmer, but even more disconcerting when seen by the
end-customer of the code. If the underlying cause cannot be identified and fixed,
at a minimum, perhaps an option to Delete/Remove Insane Objects could be
provided.

8.5. Front panel decorations should not be selected, unless selecting the entire object
(similar to clusters).

8.6. “Text.Text” property of a String Control/Indicator only works properly if the
String’s Display Format is “Normal” or “’\’ Codes”. It does not provide the
proper text sting when the String’s Display Format is “Hex” or “Password”.

 6 of 6 August 8, 2001

9. Examples and NI provided G Code
9.1. VI’s with password protected diagrams should have THOROUGH

documentation as to what that VI does. If the diagram is unavailable to see how
the code works, it is essential to know what it is supposed to do and what its
expected behavior should be, along with any limitations on input/output values.

9.2. The NI provided examples that ship with LV should be cleaned up. The large
amount of spaghetti code in the shipping examples sets a BAD precedent with
novice users.

