SQLite Toolkit for LabView

Requirements Document

Revision 0.2

February 2, 2006

Authors:

Chris Davis

Table of Contents

Introduction

Design Goals

Introduction

National Instruments LabView is known for its ability to quickly and easily provide engineers, scientists, and programmers the ability to acquire and analyze complex data sets. Many of these engineers, scientists, and programmers have need of a simple, easy to use interface to a SQL enabled database to help deal with the large amounts of data that can be acquired relatively easily with LabView. Databases such as MySQL, Oracle, DB2, and Microsoft Access have traditionally been used to provide this capability to LabView. National Instruments Database Connectivity Toolkit is typically used to provide the LabView programmer the ability to create, populate, and execute SQL statements on these commercial and open-source databases. The cost and complexity of NI's Database Connectivity Toolkit and the commercial databases it requires, can deter many LabView users from trying to interface their program with a database. These costs, and the administrative maintenance that is associated with large scale commercial and open-source databases, can add cost and complexity to a project that would normally consider using a database to hold its data. The lack of cross-platform compatibility for NI's Database Connectivity Toolkit also prevents users of Linux and Mac OS X from benefiting from a LabView-native way to access a commercial or open source database.

The SQLite Toolkit for LabView aims to provide an easy-to-use interface for LabView programmers to interface to a SQL enabled database. Using the open source project SQLite (http://www.sqlite.org) as its foundation, this toolkit will provide LabView programmers access to a file-based, SQL enabled database that is cross-platform. Access to the database file is done through a dynamic linked library (DLL) on the Microsoft Windows platform, and a shared library on the Linux and Mac OS X platforms. This project will allow the programmer access to a set of LabView subVI's that will serve as the LabView API set for the SQLite DLL/shared library. This allows the benefits of a database to be realized on a project, without extracting the high costs of purchasing, installing, and maintaining a commercial or open-source database.

Design Goals

These are the design goals of the SQLite Toolkit for LabView (LV-SQLite) project. Besides providing a set of high-level objectives for LV-SQLite, these goals act as the criteria by which proposed features are judged. Thus, the features list shown below under LV-SQLite Detailed Requirements should reflect the higher-level goals listed here.

These LV-SQLite Design Goals are not listed in any particular order. It is recognized that some of the goals might conflict or be unachievable and that trade offs will need to be made.

· Create an easy to use LabView API set for SQLite

· LV-SQLite should be cross-platform for Windows, Mac OS X and Linux

· Minimize changes to the SQLite part of the LV-SQLite source code, to make SQLite changes easier to incorporate.

· Provide a reliable, tested, file-based database that can be used on small to medium sized LabView projects.

· Integrate the SQLite for LabView toolkit into the OpenG toolkit, and provide future releases through the approved OpenG distribution method.

· Provide the capability to have multiple database files open at one time.

· Produce a toolkit compatible with the LGPL license of the other OpenG toolkits.

Implementation

SQLite (http://www.sqlite.org) is written in ANSI C for compatibility with the Microsoft Windows, Apple Mac OS X, and Linux operating systems. The SQLite Toolkit for LabView's core DLL / shared library will be written in ANSI C, just like the SQLite code from which it is derived. This will allow the SQLite Toolkit for LabView to accomplish its goal of being a cross-platform tool for LabView.

The LabView API set that is exposed to the programmer will be very basic in nature, containing the ability to open and close a database file, execute a specific SQL statement on that database file and retrieve the results of that SQL statement.

