Passing Labview Cluster to C Structure in DLL
Since a Labview cluster does not exactly correlate to a C structure, a DLL call containing a C structure as one of its argument types cannot directly accept a Labview cluster as a parameter. However, with some modification, clusters can be successfully passed to a C structure data type. Here are some details:

Example C Structure:

typedef struct {

unsigned char name[4];

unsigned char extension;

short length;

unsigned char Entries[3] [5];
char *StringPtr;
long *Fnum;

} FileEntry;

Corresponding cluster in Labview:

Element 1: String Control or 1D array of U8 with length=4, label=name
Element 2: U8, label=extension

Element 3: I16, label=length

Element 4: 2D array of U8 with length set to 3 rows and 5 columns, label=Entries

Element 5: String Control with no set length, label=StringPtr

Element 6: 1D array of I32, length=1, label=Fnum
Conversion:
1. Strings must be converted to Labview U8 array. Use typecast to convert the string to a 1D array of U8. The array length must be padded with 0 so that the length will be 4. Then convert the array to a cluster using the Array to Cluster function.
2. Single unsigned char is the same as U8 in Labview, so cluster element 2 needs no type changing.

3. Scalars need not be changed. C short type = LV I16, C long = LV I32, C unsigned short = U16, C char = U8, C byte = U8, etc.
4. 2D arrays present a problem. The array must be separated into a bunch of 1D arrays. Use index array to get each row of the 2D array into 1D array indicators. Then each 1D array needs to be converted into a cluster.
5. String pointers need to be passed as a U8 array pointer. Use typecast to convert the string to a 1D array of U8. The length of the array must be as much as the length of the max expected return length + 1 for the NULL byte (NULL=0, which signifies end of string in C). Pad with appropriate number of zero elements. Then convert the array to a cluster.
6. Numeric pointers must have the Labview variable converted to a 1D array of 1 element, since arrays are passed as pointers. Use build array to convert the scalar into a 1D array of one element. Then convert the array into a cluster.
IMPORTANT: Array Conversion:
All arrays must be converted to clusters, using the Array To Cluster function. Strings must be typecast to 1D arrays of U8, which must then be converted to a cluster. A 2D array of 3 rows and 5 columns must be indexed to get 3 1D arrays for each row of 5 elements. Each resulting 1D array must then be converted to individual clusters. This presents a problem with a 2D array with a large number of rows. In this case, a wrapper DLL may be better suited.
Final Cluster:
Once all conversions are done, the Bundle function must be used to bundle everything into one final cluster. Elements must be in the same order as the C structure. Using the above example, the resulting structure would look like this:
Element 1 = cluster (1D array of U8 converted to cluster, length=4)

Element 2 = U8

Element 3 = I16

Element 4 = cluster (1D array of U8 for row 1 of 2D array, length=5)

Element 5 = cluster (1D array of U8 for row 2 of 2D array, length=5)

Element 6 = cluster (1D array of U8 for row 3 of 2D array, length=5)

Element 7 = cluster (1D array of U8, length = max length of string + 1)

Element 8 = cluster (1D array of I32, length=1)

When defining the DLL structure parameter, set the Type = Adapt to Type and the Data Format = Pointer to Handles. Then wire the final cluster into the appropriate box on the Call Library Node.
For obtaining the DLL return value, the process must be reversed. All clusters inside the final cluster must be converted to arrays. Where a 2D array is involved, use build array to join all the 1D arrays involved. Use typecast to convert U8 arrays to strings where necessary. For string pointers, truncate the U8 array at the first element equal to 0 (end of string). Truncation is not necessary for strings defined with a specific length, like name [4]. In this case, there is no NULL to indicate the end of a string since the string is fixed for 4 characters. Index array can be used to get the value from a scalar pointer.
This process does not cover all possible cluster/structure configurations. Some C structures include pointers to other structures and other data types (enums). For these, it may be best to use a wrapper DLL or a CIN.

RAD – 12-01-2005

