

Modbus Master Library

User Guide
Rev. 1.3

Plasmionique Inc. | Modbus Master Library | Introduction 2

Contents

1 Introduction ..3

2 System Requirements ...3

3 Installation ..3

4 Examples ..3

5 Support ...3

6 Modbus Comm Tester ..4

7 Modbus Palette ...6

8 Modbus Session ..7

9 Transaction Functions...12

10 MB VISA Locks ...19

11 Error Codes ...21

12 References ..21

Plasmionique Inc. | Modbus Master Library | Introduction 3

1 Introduction

The Plasmionique Modbus Master Library is an open source add-on package for LabVIEW. It implements the

Modbus Application Protocol Specification V1.1b3 for communicating with Modbus devices (slaves) over

Asynchronous Serial or TCP/IP networks. It has been developed as a replacement for NI’s Modbus V1.2.1 and

to provide an open source alternative to the Modbus API released by NI labs.

This document describes the system requirements, installation procedure and usage of the API.

2 System Requirements

Software:

 National Instruments LabVIEW 2012 (or newer)

 National Instruments VISA 5.4 (or newer)

 JKI VI Package Manager 2019

3 Installation

Download the latest version of the library from: https://lavag.org/files/file/286-plasmionique-modbus-master/

Install the “.vip” file using VI Package Manager.

4 Examples

Examples are included in "<LabVIEW>\examples\Plasmionique\MB Master\":

 MB_Master Comm Tester.vi: Demonstrates usage of API to open/close connection and communicate

with a Modbus slave device.

 MB_Master Multiple Sessions.vi: Demonstrates usage of API to open concurrent Modbus sessions.

 MB_Master Simple Serial.vi: Demonstrates polling of a single input register over serial line.

These examples can also be found via Example Finder within LabVIEW.

5 Support

If you have any problems with this library or want to suggest changes contact Porter via PM on lavag.org or post

your comment on the support forum: https://lavag.org/topic/19544-cr-plasmionique-modbus-master/

The development source code is available on GitHub: https://github.com/rfporter/Modbus-Master

https://lavag.org/files/file/286-plasmionique-modbus-master/
https://lavag.org/topic/19544-cr-plasmionique-modbus-master/
https://github.com/rfporter/Modbus-Master

Plasmionique Inc. | Modbus Master Library | Modbus Comm Tester 4

6 Modbus Comm Tester

Included with this library is a tool for testing Modbus communication with your device, allowing you to

determine the correct communication parameters and data addresses before writing any code.

The Modbus Comm Tester can be launched from the “Tools > Plasmionique” menu of the LabVIEW

development environment.

6.1 Usage

- Run the VI

- Enter the Connection Type (Serial or TCP) then fill in the connection parameters.

- To start the Modbus session, click the Open Port button.

- To close the Modbus session, click the Close Port button.

- The green LED indicator will be lit when the session is open.

- The data starting addresses are input in hexadecimal notation. If decimal notation is preferred, click the

radix selector (x) and change to d for decimal notation.

- Note that input registers, discrete inputs, holding registers, and coils can be polled at the specified

polling period by checking their “Poll” box.

Plasmionique Inc. | Modbus Master Library | Modbus Comm Tester 5

6.2 Communication Status

- Last TX: The last Modbus message, in hexadecimal

notation, sent from the master.

- Last RX: The last Modbus message, in hexadecimal

format, received by the master.

- Last RX Time: Time that the last message was

received by the mater.

- dt: Duration, in milliseconds, of the last Modbus action

or transaction.

- Last Error Time: Time that the last error occurred.

- Last Error Status: Display the error code and source of the last error. Right-click and select explain error

for a more information about the error.

Plasmionique Inc. | Modbus Master Library | Modbus Palette 6

7 Modbus Palette

The Modbus Master API is located in the LabVIEW functions palette under “Data Communication > Modbus

Master”.

The top row contains functions for managing the Modbus Session. The property node can be used to access

session data.

Modbus transaction functions are listed on subsequent rows. Each one implements a particular function code

from the Modbus Application Protocol Specification. See: (MODBUS Application Protocol Specification

V1.1b3). They encapsulate sending the request to the slave, waiting for a response, and validating and

interpreting the response. Exception codes and timeouts are placed on their error out terminal.

Function codes currently supported are:

 0x01 - Read Coils

 0x02 - Read Discrete Inputs

 0x03 - Read Holding Registers

 0x04 - Read Input Registers

 0x05 - Write Single Coil

 0x06 - Write Single Register

 0x07 - Read Exception Status

 0x0F - Write Multiple Coils

 0x10 - Write Multiple Registers

 0x16 - Mask Write Register

 0x17 - Read/Write Multiple Registers

 0x2B/0x0E - Read Device Identification

Plasmionique Inc. | Modbus Master Library | Modbus Session 7

8 Modbus Session

The Modbus session keeps track of the type of connection, slave ID and manages the communication bus. A

Modbus session must be opened in order to establish a connection with a slave device. It should be closed when

it is no longer needed in order to release system resources.

Two types of Modbus sessions are implemented:

 Asynchronous Serial: Modbus over RS-232, RS-422 or RS-485 serial line. Can be configured for

ASCII or RTU mode. See: (MODBUS over Serial Line Specification & Implementation Guide V1.02)

 TCP/IP: Modbus over TCP/IP network. See: (MODBUS Messaging on TCP/IP Implementation Guide

V1.0b)

8.1 Session Properties

Placing the property node on a Modbus session wire will reveal the following properties:

 ADU (Read Only): The Application Data Unit (Sent and received) for the last

Modbus transaction. Use an additional property node on the ADU wire to access the

RX/TX data and timestamps.

 Session Valid (Read Only): Indicates if the Modbus session is open and properly initialized.

 Slave ID (Read/Write): The address of the slave device (1 to 247). A slave ID of zero specifies

broadcast mode for sending commands to all slaves on the communication bus.

8.2 Opening a Modbus Serial Session

To open an Asynchronous Serial Modbus Session, use “Open Serial Session.vi” from the functions palette.

Inputs:

 Mode: Select either ASCII or RTU mode. RTU is default.

 VISA Resource: Specify the COM port that the slave is connected to.

 Serial Config: Cluster of serial port configuration parameters.

o Baud rate: Baud rate in bps. Commonly used values include 9600, 19200, 38400, 57600 and

115200 bps.

o Stop bits: Number of stop bits.

Plasmionique Inc. | Modbus Master Library | Modbus Session 8

Number of Stop Bits Value

1.0 10

1.5 15

2.0 20

o Parity: Type of parity bit {None, Odd, Even, Mark, Space}.

o Flow control: Type of flow control {None, XON/XOFF, RTS/CTS, XON/XOFF&RTS/CTS,

DTR/DSR, XON/XOFF&DTR/DSR}.

o Timeout: Communication timeout in ms. If the slave device does not respond to a request

within this period, a timeout error is generated.

o Retries: Number of times to retry a Modbus transaction before aborting and reporting the error.

 Slave ID: The address of the slave device (1 to 247). A slave ID of zero specifies broadcast mode for

sending commands to all slaves on the communication bus. Note that the Slave ID can be changed later

using the property node.

Outputs:

 MB_Serial Session: Asynchronous Serial Modbus Session object. Use this wire to perform Modbus

transactions.

8.2.1 Serial Session Properties

Placing the property node on the Asynchronous Serial Modbus Session wire reveals

additional parameters:

 Mode (Read Only): Indicates ASCII or RTU mode.

 Retries (Read/Write): Number of times to retry a Modbus transaction before

aborting and reporting the error.

 Serial Config (Read Only): Cluster of serial port configuration parameters.

 VISA Resource (Read/Write): VISA session reserved by the Modbus Session. This is provided in case

some additional configuration of the serial port is required after the session has been opened.

Plasmionique Inc. | Modbus Master Library | Modbus Session 9

8.3 Opening a Modbus TCP/IP Session

To open TCP/IP Modbus Session, use “Open TCP Session.vi” from the functions palette.

Inputs:

 IP Address: IP address or hostname of the slave device (Modbus server).

 Port: Port that the slave device is listening on. Default port is 502.

 Timeout: Communication timeout in ms to use for TCP read/write functions.

 Slave ID: Equivalent to the serial slave ID. This setting may be required when communicating with a

serial slave through a Modbus gateway. By default slave ID is set to 255. Note that the Slave ID can be

changed later using the property node.

Outputs:

 MB_TCP Session: TCP/IP Modbus Session object. Use this wire to perform Modbus transactions.

8.4 Closing a Modbus Session

To close any Modbus Session, use “Close Session.vi” from the functions palette.

Plasmionique Inc. | Modbus Master Library | Modbus Session 10

8.5 Concurrent Modbus Sessions

Any number of independent Modbus Master Sessions can be opened and transactions can run concurrently

without conflict.

Sessions are not independent if:

a. Multiple sessions communicate with the same slave device. For TCP/IP sessions this is not an issue.

Each session is assigned a unique local port number. For serial sessions, transactions are forced to run

consecutively due to an exclusive VISA lock on the comm port (with a timeout of 10 seconds). That is,

if a session’s transaction locks the comm port for more than 10 seconds, pending transactions from other

sessions may time out.

b. Multiple sessions are connected to the same communication bus. For TCP/IP sessions this is not an

issue. Each session is assigned a unique local port number. For serial sessions, transactions are forced to

run consecutively due to an exclusive VISA lock on the comm port (with a timeout of 10 seconds). That

is, if a session’s transaction locks the comm port for more than 10 seconds, pending transactions from

other sessions may time out.

c. A session wire is branched, allowing multiple copies of the session to run concurrently. In this

situation, transactions from all copies are forced to run consecutively due to a session-specific mutex

lock. That is, of one if one session is performing a transaction, pending transactions from other sessions

are forced to wait (indefinitely) until the transaction is complete.

Note that calling “Close Session” on any one of the copies will close all copies of the session. Further

requests on these session wires will return error 403483 “session invalid”.

Although interdependent Modbus sessions require some special consideration, there are situations where they are

very useful. For example, if you need to communicate with multiple slaves connected to a single RS-485 bus,

you could:

a. Open a single session and use the property node to change the Slave ID for each transaction. This avoids

interdependent sessions but does not scale very well. Communication with all slave devices must be

implemented in the same data acquisition loop. It is more difficult to implement different data polling

rates for each slave. It also becomes very messy to handle device-specific data types or error cases.

Plasmionique Inc. | Modbus Master Library | Modbus Session 11

b. Open multiple sessions, each using the same “Mode”, “Serial Config” and “VISA Resource” but unique

Slave IDs (this is an example of case B above). Each session can run in its own, unique, data acquisition

loop as long as the 10 second transaction time limit is respected. This is the preferred solution but care

must be taken to ensure that all sessions are configured identically.

c. Open a single session then branch the session wire and use the property node to set the Slave ID of each

branch (this is an example of case C above). Each branched session can run in its own, unique, data

acquisition loop. This method guarantees that all sessions have the same configuration however, if one

session is closed, the other sessions will be closed as well.

Plasmionique Inc. | Modbus Master Library | Transaction Functions 12

9 Transaction Functions

The Modbus Master API has one VI for each function code of the Modbus Application Specification.

9.1 Read Coils

Function Code 1: Reads quantity number of coils starting from starting address.

Inputs:

 MB Session in: Modbus session on which to perform the transaction.

 Starting address (U16): Address of first coil to read.

 Quantity (U16): Number of coils to read.

Outputs:

 MB Session out: Modbus session updated with transaction’s ADU data.

 Coils: Array of coil values (Boolean). The value of the first coil is at index zero.

9.2 Read Discrete Inputs

Function Code 2: Reads quantity number of discrete inputs starting from starting address.

Inputs:

 MB Session in: Modbus session on which to perform the transaction.

 Starting address (U16): Address of first discrete input to read.

 Quantity (U16): Number of discrete inputs to read.

Outputs:

 MB Session out: Modbus session updated with transaction’s ADU data.

 Inputs: Array of discrete input values (Boolean). The value of the first input is at index zero.

Plasmionique Inc. | Modbus Master Library | Transaction Functions 13

9.3 Read Holding Registers

Function Code 3: Read quantity number of holding registers starting from starting address.

Inputs:

 MB Session in: Modbus session on which to perform the transaction.

 Starting address (U16): Address of first holding register to read.

 Quantity (U16): Number of holding registers to read.

Outputs:

 MB Session out: Modbus session updated with transaction’s ADU data.

 Registers: Array of holding register values (U16). The value of the first holding register is at index zero.

9.4 Read Input Registers

Function Code 4: Read quantity number of input registers starting from starting address.

Inputs:

 MB Session in: Modbus session on which to perform the transaction.

 Starting address (U16): Address of first input register to read.

 Quantity (U16): Number of input registers to read.

Outputs:

 MB Session out: Modbus session updated with transaction’s ADU data.

 Registers: Array of input register values (U16). The value of the first input register is at index zero.

Plasmionique Inc. | Modbus Master Library | Transaction Functions 14

9.5 Write Single Coil

Function Code 5: Write value to coil at address.

Inputs:

 MB Session in: Modbus session on which to perform the transaction.

 Address (U16): Address of the coil.

 Value (Boolean): Value to write to the coil.

Outputs:

 MB Session out: Modbus session updated with transaction’s ADU data.

9.6 Write Single Register

Function Code 6: Write value to holding register at address.

Inputs:

 MB Session in: Modbus session on which to perform the transaction.

 Address (U16): Address of the register.

 Value (U16): Value to write to the register.

Outputs:

 MB Session out: Modbus session updated with transaction’s ADU data.

Plasmionique Inc. | Modbus Master Library | Transaction Functions 15

9.7 Read Exception Status

Function Code 7: Reads slave exception status.

Inputs:

 MB Session in: Modbus session on which to perform the transaction.

Outputs:

 MB Session out: Modbus session updated with transaction’s ADU data.

 Exception Status (U8): Value of the slave’s exception status register.

9.8 Write Multiple Coils

Function Code 15: Writes coil values starting at starting address.

Inputs:

 MB Session in: Modbus session on which to perform the transaction.

 Address (U16): Address of the first coil to write.

 Values: Array of values (Boolean) to write. Value for the first coil is at index zero. The number of coils

to write to is specified by the size of the array.

Outputs:

 MB Session out: Modbus session updated with transaction’s ADU data.

Plasmionique Inc. | Modbus Master Library | Transaction Functions 16

9.9 Write Multiple Registers

Function Code 16: Writes holding register values starting at starting address.

Inputs:

 MB Session in: Modbus session on which to perform the transaction.

 Address (U16): Address of the first register to write.

 Values: Array of values (U16) to write. Value for the first register is at index zero. The number of

register to write to is specified by the size of the array.

Outputs:

 MB Session out: Modbus session updated with transaction’s ADU data.

9.10 Mask Write Holding Registers

Function Code 22: Modifies value of holding register at address based on the AND mask and OR mask. The

slave device implements the following formula to modify the register's value:

Result = (Current Value & And_Mask) | (Or_Mask & !And_Mask)

Set bits to 0 in AND mask to specify which bits to modify. Use OR mask to specify the value of bits.

Example:

Register Value: 1100 0001

AND Mask: 1111 1100

OR Mask: 0000 0010

Result: 1100 0010

Inputs:

 MB Session in: Modbus session on which to perform the transaction.

 Address (U16): Address of the register to modify.

 AND mask (U16): Set bits of AND mask to zero to specify which bits of the register to modify.

Plasmionique Inc. | Modbus Master Library | Transaction Functions 17

 OR mask (U16): Set bits of OR mask to specify the value of the modified bits of the register.

Outputs:

 MB Session out: Modbus session updated with transaction’s ADU data.

9.11 Read-Write Holding Registers

Function Code 23: Writes write values to holding registers starting at write starting address then reads read

quantity number of holding registers starting at read starting address.

Inputs:

 MB Session in: Modbus session on which to perform the transaction.

 Read starting address (U16): Address of the first register to read.

 Read quantity (U16): Number of registers to read.

 Write starting address (U16): Address of the first register to write.

 Values: Array of values (U16) to write. Value for the first register is at index zero. The number of

register to write to is specified by the size of the array.

Outputs:

 MB Session out: Modbus session updated with transaction’s ADU data.

 Read registers: Array of register values (U16). The value of the first register is at index zero.

Plasmionique Inc. | Modbus Master Library | Transaction Functions 18

9.12 Read Device Identification

Function Code 43 / 14: Read device ID objects. Specify the type of access using the read device ID code and

the id of the starting object using object ID.

Inputs:

 MB Session in: Modbus session on which to perform the transaction.

 Object ID (U8): ID number of first device ID object to read.

 Read device ID code (U8): Specifies type of read operation.

o 0x01 - Basic: Request the basic stream of devID objects (0x00 to 0x02) starting from the

specified object ID.

o 0x02 - Regular: Requests the regular stream of devID objects (0x00 to 0x7F) starting from the

specified object ID.

o 0x03 - Extended: Requests the extended stream of devID objects (0x00 to 0xFF) starting from

the specified object ID.

o 0x04 - Single: Requests a single devID object specified by object ID.

Outputs:

 MB Session out: Modbus session updated with transaction’s ADU data.

 DevID Objects: Array of DevID objects. Each element contains the object ID number and string value.

 Conformity Level (U8): Indicates the type of access supported by the device.

o 0x01 - Basic (stream only)

o 0x02 - Regular (stream only)

o 0x03 - Extended (stream only)

o 0x81 - Basic (stream and single)

o 0x82 - Regular (stream and single)

o 0x83 - Extended (stream and single)

Plasmionique Inc. | Modbus Master Library | MB VISA Locks 19

10 MB VISA Locks

The MB VISA Lock library was developed after a flaw was discovered in the behavior of the LabVIEW’s VISA

lock primitive. This flaw was causing the Modbus Master to behave erratically when communicating with

multiple slaves over a shared serial port. The MB VISA Lock library wraps the VISA Lock primitive and forces

it to behave as originally expected.

The discussion about the flaw and fix can be found here: https://lavag.org/topic/19871-visa-lock-behavior/

The Modbus Master library calls the MB VISA Lock library internally. For advanced users, the library has been

included in the Modbus Palette.

10.1 Obtain VISA Lock Ref

Obtain the reference for the VISA resource lock. This reference is stored in the UserData property of the output

VISA session. This VI should be called just after the VISA session is opened.

10.2 Acquire VISA Lock

Attempt to acquire an exclusive lock on the VISA resource. If the lock cannot be obtained before the specified

timeout, error -1073807345 will be returned.

https://lavag.org/topic/19871-visa-lock-behavior/

Plasmionique Inc. | Modbus Master Library | MB VISA Locks 20

10.3 Release VISA Lock

Release the session's exclusive lock on the VISA resource.

Input errors do not affect the behavior of this VI.

10.4 Dispose VISA Lock Ref

Dispose of the VISA resource lock reference. The output VISA session will have an invalid reference stored in

the User Data property. This VI should be called just before closing the VISA session.

Input errors do not affect the behavior of this VI.

Plasmionique Inc. | Modbus Master Library | Error Codes 21

11 Error Codes

The following custom error codes have been defined. They are included in custom error codes file

“Plasmionique-MB Master-errors.txt” located in the “<LabVIEW>\project\errors” directory.

Error Code Description

403461 Modbus Exception Code 1: Illegal function

403462 Modbus Exception Code 2: Illegal data address

403463 Modbus Exception Code 3: Illegal data value

403464 Modbus Exception Code 4: Slave device failure

403465 Modbus Exception Code 5: Slave acknowledge

403466 Modbus Exception Code 6: Slave device busy

403467 Modbus Exception Code 7: Slave NACK

403468 Modbus Exception Code 8: Memory parity error

403470 Modbus Exception Code 10: Gateway path unavailable

403471 Modbus Exception Code 11: Gateway target device failed to respond

403481 Modbus slave ID mismatch

403482 Modbus CRC/LRC error

403483 Invalid Modbus session

403484 Modbus TCP invalid protocol ID

403485 Modbus TCP transaction ID mismatch

12 References

Modbus Organization. (2006). MODBUS over Serial Line Specification & Implementation Guide V1.02.

Retrieved from Modbus.org: http://www.modbus.org/docs/Modbus_over_serial_line_V1_02.pdf

Modbus Organization. (2012). MODBUS Application Protocol Specification V1.1b3. Retrieved from

Modbus.org: http://www.modbus.org/docs/Modbus_Application_Protocol_V1_1b3.pdf

Modbus-IDA. (2006). MODBUS Messaging on TCP/IP Implementation Guide V1.0b. Retrieved from

Modbus.org: http://www.modbus.org/docs/Modbus_Messaging_Implementation_Guide_V1_0b.pdf

