
Application Note 154

LabVIEW™, National Instruments™, and ni.com™ are trademarks of National Instruments Corporation. Product and company names mentioned herein are trademarks
or trade names of their respective companies. For patents covering National Instruments products, refer to the appropriate location: Help»Patents in your software, the
patents.txt file on your CD, or ni.com/patents.

342012B-01 © 2000, 2003 National Instruments Corporation. All rights reserved. April 2003

LabVIEW™ Data Storage

Introduction
This document describes the formats in which you can save data. This information is most useful to advanced users,
such as those using shared libraries (DLLs) or code interface nodes (CINs) and those using the file I/O functions for
reading and writing binary data to files. This document describes the following concepts:

• How LabVIEW stores data in memory

• How LabVIEW converts binary data for file storage on disk

• Relationship of type descriptors to data storage

How LabVIEW Stores Data in Memory
This section describes how LabVIEW stores data in memory for controls, indicators, wires, and other objects.

Boolean Data
LabVIEW stores Boolean data as 8-bit values. If the value is zero, the Boolean value is FALSE. Any nonzero value
represents TRUE.

Numeric Data
For more information, refer to the Numeric Data Types topic in the LabVIEW Help.

Byte Integer
Byte integer numbers have 8-bit format, signed and unsigned.

Word Integer
Word integer numbers have 16-bit format, signed and unsigned.

Long Integer
Long integer numbers have 32-bit format, signed and unsigned.

Single
Single-precision floating-point numbers have 32-bit IEEE single-precision format.

31 23 0

s 7 0exp 22 mantissa 0

Application Note 154 2 ni.com

Double
Double-precision floating-point numbers have 64-bit IEEE double-precision format.

Extended
In memory, the size and precision of extended-precision numbers vary depending on the platform, as described in the
following sections:

• Windows and Linux – Extended-precision floating-point numbers have 80-bit IEEE extended-precision format.

• Power Macintosh – Extended-precision floating-point numbers are represented as two double-precision
floating-point numbers added together, called the Apple double-double format.

• Sun – Extended-precision floating-point numbers have 128-bit IEEE extended-precision format.

Complex Single
Complex single-precision floating-point numbers consist of real and imaginary values in 32-bit IEEE single-precision
format.

Complex Double
Complex double-precision floating-point numbers consist of real and imaginary values in 64-bit IEEE
double-precision format.

63 52 0

s 10 0exp 51 mantissa 0

79 64 0

s 15 0exp 63 mantissa 0

63 52 0

s 10 0exp 51 mantissa 0

63 52 0

s 10 0exp 51 mantissa 0

head tail

127 112 0

s 14 0exp 111 mantissa 0

31 23 0

s 7 0exp 22 mantissa 0

31 23 0

s 7 0exp 22 mantissa 0

real imaginary

63 52 0

s 10 0exp 51 mantissa 0

63 52 0

s 10 0exp 51 mantissa 0

real imaginary

© National Instruments Corporation 3 Application Note 154

Complex Extended
Complex extended-precision floating-point numbers consist of real and imaginary values in IEEE extended-precision
format. In memory, the size and precision of extended-precision numbers vary depending on the platform, as described
in the following sections:

• Windows and Linux – Extended-precision floating-point numbers have 80-bit IEEE extended-precision format.

• Power Macintosh – Extended-precision floating-point numbers are represented as two double-precision
floating-point numbers added together, called the Apple double-double format.

• Sun – Extended-precision floating-point numbers have 128-bit IEEE extended-precision format.

Note For floating point and complex numbers, s is the sign bit (0 for positive, 1 for negative), exp is the
biased exponent (base 2), and mantissa is a number in the [0,1] range.

Time Stamp
LabVIEW stores a time stamp as a cluster of four integers where the first two integers (64 bits) represent the number
of whole seconds after 01/01/1904 00:00.00 Universal Time. The next two integers (64 bits) represent the fractions of
seconds.

79 64 0

s 15 0exp 63 mantissa 0

79 64 0

s 15 0exp 63 mantissa 0

real imaginary

63 52 0

s 10 0exp 51 mantissa 0

63 52 0

s 10 0exp 51 mantissa 0

head tail

63 52 0

s 10 0exp 51 mantissa 0

63 52 0

s 10 0exp 51 mantissa 0

head tail

real

imaginary

127 112 0

s 14 0exp 111 mantissa 0

127 112 0

s 14 0exp 111 mantissa 0

real imaginary

127 64 0

seconds 63 fraction of second 0

fixed point

Application Note 154 4 ni.com

Arrays
LabVIEW stores arrays as handles, or pointers to pointers, containing the size of each dimension of the array in 32-bit
integers, followed by the data. If your handle is 0, the array is empty. Because of alignment constraints of certain
platforms, the dimension size may be followed by a few bytes of padding so that the first element of the data is correctly
aligned. If you write DLLs or CINs, refer to the Alignment Considerations section of Chapter 4 Programming Issues
for CINs, of the Using External Code in LabVIEW manual for more information.

The following illustration shows a 1D array of single-precision floating-point numbers. The decimal numbers to the
left represent the byte offsets of locations in memory where the array begins.

The following illustration shows a 4D array of 16-bit integers.

0: dimSize = n

4: float_32 [0]

8: float_32 [1]

float_32 [n–2]

float_32 [n–1]

0: 1st dimSize = i

4: 2nd dimSize = j

8: 3rd dimSize = k

12: 4th dimSize = l

16: Int_16 [0,0,0,0]

18: Int_16 [0,0,0,1]

Int_16 [i–1,j–1,k–1,l–2

Int_16 [i–1,j–1,k–1,l–1

© National Instruments Corporation 5 Application Note 154

Strings
LabVIEW stores strings as a pointer to a structure containing a 4-byte length value followed by a 1D arrays of byte
integers (8-bit characters), as shown in the following illustration. If the handle, the pointer to the structure, is NULL,
the string is treated as the empty string, which is the same as a string with length value of zero. Because LabVIEW
uses the length value to determine the end of the string and not a terminating character, all characters including the
NULL character, ASCII character 0, can be embedded in the string at any point. When passing LabVIEW strings to
external code that expects a C string, the embedded NULL characters cause that code to interpret the string as
terminating at the first NULL character.

Paths
LabVIEW stores paths as handles, or pointers to pointers, containing the path type and number of path components
in 16-bit integers, followed by the path components. The path type is 0 for an absolute path, 1 for a relative path,
and 3 for a Universal Naming Convention (UNC) path. A UNC path occurs on Windows only and has
\\<machine name>\<share name> rather than a drive letter as its first component. Any other value of path type
indicates an invalid path. Each path component is a Pascal string (P-string) in which the first byte is the length, in bytes,
of the P-string, not including the length byte.

The following illustrations show how LabVIEW stores representative paths for each platform.

0: 1st dimSize = n

4: char[0]

char[1]

char[n–2]

char[n–1]

5:

Handle

0: 0

2: 3

4: 1

5: "C"

C:\temp\data.txt

Windows

6:

7:

11:

12:

4

"temp"

8

"data.txt"

0: 0

2: 3

4: 6

5: "Volume"

Volume:Folder:File

Macintosh

11:

12:

18:

19:

6

"Folder"

4

"File"

0: 0

2: 3

4: 3

5: "usr"

/usr/temp/file

Unix

8:

9:

13:

14:

4

"temp"

4

"file"

Application Note 154 6 ni.com

Clusters
LabVIEW stores cluster elements of varying data types according to the cluster order. To set cluster order, right-click
the cluster border and select Cluster Order from the shortcut menu. LabVIEW stores scalar data directly in the cluster.
LabVIEW stores arrays, strings, and paths indirectly. The LabVIEW cluster stores a handle that points to the location
in memory where the data is stored. Because of alignment constraints of certain platforms, the dimension size may be
followed by a few bytes of padding so that the first element of the data is correctly aligned. If you write DLLs or CINs,
refer to the Alignment Considerations section of Chapter 4 Programming Issues for CINs, of the Using External Code
in LabVIEW manual for more information.

The following illustrations show a cluster that contains a single-precision floating-point number, an extended-precision
floating-point number, and a handle to a 1D array of unsigned 16-bit integers, respectively.

• Windows and Linux

• Power Macintosh

• Sun

LabVIEW stores embedded clusters directly – meaning that the data is stored as if the data were not embedded in the
subcluster. LabVIEW stores only arrays, strings, and paths indirectly.

The following illustration shows two different clusters that store their data the same way.

0: SGL float

4: EXT float

14: Handle to Array

0: SGL float

4: EXT float

16: Handle to Array

0: SGL float

4: Padding

8: EXT float

Handle to Array24:

0: SGL float

4: SGL float

8: Handle to Array

© National Instruments Corporation 7 Application Note 154

Waveform
LabVIEW stores waveforms exactly like clusters.

Refnum
LabVIEW stores refnums as a signed 32-bit integer.

Variant
LabVIEW stores variants as a handle to a LabVIEW internal data structure. The variant data type is made up of 4 bytes.

Flattened Data
LabVIEW converts data from the format in memory to a form more suitable for writing to or reading from a file. This
more suitable format is called flattened data.

Because LabVIEW stores strings, arrays, and paths in handles (pointers to pointers in separate regions of memory),
clusters that contain these strings and arrays are noncontiguous. In general, LabVIEW stores data in tree form. For
example, LabVIEW stores a cluster as a double-precision floating-point number and a string as an 8-byte floating-point
number, followed by a 4-byte handle to the string. LabVIEW does not store the string data adjacent to the
extended-precision floating-point number in memory. Therefore, to write the cluster data to disk, LabVIEW must get
the data from two different places. Of course, with a cluster that contains many strings, arrays, and/or paths, LabVIEW
stores the data in many different places.

When you save data to a file, LabVIEW flattens the data into a single string before saving it. This way, even the data
from an arbitrarily complex cluster is made contiguous instead of stored in several pieces. When LabVIEW loads data
from a file, it must perform the reverse operation. It must read a single string and unflatten it into its internal, possibly
noncontiguous, form.

LabVIEW normalizes the flattened data to a standard form so VIs that run on any platform can use the data. LabVIEW
stores flattened numeric data in big endian form (most-significant byte first), and it stores flattened extended precision
floating-point numbers as 16-byte quantities using the Sun extended-precision format described earlier in this
application note.

Note When writing data to a file for use by an application not created using LabVIEW or when reading
data from a file produced by an application not created using LabVIEW, you can transform your data into
little endian (least-significant byte first) or big endian form after flattening or before unflattening.
Windows applications typically expect numeric data to be in little endian form.

Use the Flatten to String and Unflatten from String functions, described in the LabVIEW Help, to flatten and unflatten
data just as LabVIEW does internally when LabVIEW saves and loads data. These functions are in the
Functions»Advanced»Data Manipulation subpalette.

The flattened form of a piece of data does not encode the type of the data. LabVIEW stores this information in a type
descriptor. Refer to Type Descriptors for more information. The Unflatten From String function requires you to wire
a data type as an input so the function can decode the string properly.

Use the variant data type to work with data independently of data type instead of flattening the data when you write to
memory and unflattening the data when you read from memory. Use the Variant functions, located on the
Functions»Advanced»Data Manipulation»Variant palette, to create and manipulate variant data. Refer to the
Handling Variant Data section of Chapter 5, Building the Block Diagram, of the LabVIEW User Manual for more
information about using the variant data type.

Application Note 154 8 ni.com

Booleans and Numerics
The flattened form of any numeric and Boolean type stores the data only in big endian format. For example, a 32-bit
integer with value –19 is flattened to FFFF FFED. A double-precision floating-point number with a value equal to 1/4
is flattened to 3FD0 0000 0000 0000. A Boolean TRUE is any nonzero value. A Boolean FALSE is 00.

The flattened form for extended-precision numbers is the Sun 128-bit extended-precision floating-point format. When
you save extended-precision numbers to disk, LabVIEW stores them in this format.

Strings and Paths
Because strings and paths have variable sizes, a flattened 32-bit integer that records their length in bytes precedes the
flattened form. For example, a string type with value ABC is flattened to 0000 0003 4142 43. For strings, the
flattened format is similar to the format the string takes in memory.

However, paths do not have a length value preceding them when LabVIEW stores them in memory, so this value comes
from the actual size of the data in memory and prefixes the value when LabVIEW flattens the data. This length is
preceded by four characters: PTH0.

For example, a path with value C:\File is flattened to 5054 4830 0000 000B 0000 0002 0163 0466 696C 65.

5054 4830 indicates PTH0. 0000 000B indicates 11 bytes total. 0000 is the type. 0002 is the number of components.
0163 indicates the letter C as a Pascal string. 0466 696C 65 indicates the word File as a Pascal string.

Arrays
Flattened 32-bit integers that record the size, in elements, of each of the dimensions of an array, precede the data for a
flattened array. The slowest varying dimension is first, followed successively by the faster varying dimensions, just as
the dimension sizes are stored in memory. The flattened data follows immediately after these dimension sizes in the
same order in which LabVIEW stores them in memory. The following example shows a 2D array of six 8-bit integers.

{ {1, 2, 3}, {4, 5, 6} } is flattened to 0000 0002 0000 0003 0102 0304 0506.

The following example shows a flattened 1D array of Boolean variables.

{T, F, T, T} is flattened to 0000 0004 0100 0101. The preferred value for TRUE is 01.

Clusters
A flattened cluster is the concatenation, in cluster order, of the flattened data of its elements. For example, a flattened
cluster of a 16-bit integer of value 4 (decimal) and a 32-bit integer of value 12 is 0004 0000 000C.

A flattened cluster of a string ABC and a 16-bit integer of value 4 is 0000 0003 4142 4300 04.

A flattened cluster of a 16-bit integer of value 7, a cluster of a 16-bit integer of value 8, and a 16-bit integer of value 9
is 0007 0008 0009.

Waveforms
LabVIEW flattens waveforms exactly like clusters.

Refnums
LabVIEW stores the majority of flattened refnums as flattened 32-bit integers, which represent an internal LabVIEW
data structure. Refer to the Booleans and Numerics section for more information about how LabVIEW flattens 32-bit
integers.

© National Instruments Corporation 9 Application Note 154

You can classify the remaining refnums by their refnum type code. Refer to the Type Descriptors section to determine
the type code.

Type codes 0xE, 0xF and 0x15 are refnums that store their data as a flattened string. Refer to the Strings and Paths
section for more information about how LabVIEW flattens strings. This string contains the value of the refnum tag,
and can be empty (4 bytes of zero).

Type codes 0x1A, 0X1C, and 0x1D concatenate, in this order:

1. A flattened string for the name in the refnum tag. This string is empty (4 bytes of zero) if the refnum does not have
a tag.

2. A flattened string that contains information specific to the refnum. This string can be empty (4 bytes of zero).

3. A flattened string that contains information specific to the refnum. This string can be empty (4 bytes of zero).

4. A flattened 32-bit signed integer that contains information specific to the refnum.

5. A flattened string that contains information specific to the refnum. This string can be empty (4 bytes of zero).

Type Descriptors
Each wire and terminal on the block diagram is associated with a data type. LabVIEW keeps track of this type with a
structure in memory called a type descriptor. This type descriptor is a sequence of 16-bit integers that can describe any
data type in LabVIEW. Numeric values are written in hexadecimal format, unless otherwise noted.

The generic format of a type descriptor is

<length> <type code>

Some type descriptors have additional information following the type code. Arrays and clusters are structured or
aggregate data types because they include other types. For example, the cluster type contains additional information
about the type of each of its elements.

The first word (16 bits) in any type descriptor is the length, in bytes, of that type descriptor, including the length word.
The second word (16 bits) is the type code. LabVIEW reserves the high-order byte of the type code (the xx in the
following table) for internal use. When comparing two type descriptors for equality, you should ignore this byte. Two
type descriptors are equal even if the high-order bytes of the type codes are not.

The type code encodes the actual type information, such as single-precision or extended-precision floating-point
number, as listed in Tables 1 and 2. These type code values might change in future versions of LabVIEW.

Application Note 154 10 ni.com

Data Types
Tables 1 and 2 list numeric and nonnumeric data types, type codes, and type descriptors.

Table 1. Scalar Numeric Data Types

Data Type
Type Code

(numbers in
hexadecimal)

Type Descriptor
(numbers in hexadecimal)

8-bit Integer 01 0004 xx01

16-bit Integer 02 0004 xx02

32-bit Integer 03 0004 xx03

Unsigned 8-bit Integer 05 0004 xx05

Unsigned 16-bit Integer 06 0004 xx06

Unsigned 32-bit Integer 07 0004 xx07

Single-Precision Floating-Point Number 09 0004 xx09

Double-Precision Floating-Point Number 0A 0004 xx0A

Extended-Precision Floating-Point Number 0B 0004 xx0B

Single-Precision Complex Floating-Point Number 0C 0004 xx0C

Double-Precision Complex Floating-Point Number 0D 0004 xx0D

Extended-Precision Complex Floating-Point Number 0E 0004 xx0E

Enumerated 8-bit Integer 15 <nn> xx15 <k> <k pstrs>

Enumerated 16-bit Integer 16 <nn> xx16 <k> <k pstrs>

Enumerated 32-bit Integer 17 <nn> xx17 <k> <k pstrs>

Single-Precision Physical Quantity 19 <nn> xx19 <k> <k base-exp>

Double-Precision Physical Quantity 1A <nn> xx1A <k> <k base-exp>

Extended-Precision Physical Quantity 1B <nn> xx1B <k> <k base-exp>

Single-Precision Complex Physical Quantity 1C <nn> xx1C <k> <k base-exp>

Double-Precision Complex Physical Quantity 1D <nn> xx1D <k> <k base-exp>

Extended-Precision Complex Physical Quantity 1E <nn> xx1E <k> <k base-exp>

n=length; x=reserved; k=number; k pstrs=number of Pascal strings; k base-exp=number of base-exponent pairs.
Refer to the Physical Quantity section of this document for more information.

© National Instruments Corporation 11 Application Note 154

The minimum value in the size field of a type descriptor is 4, as shown in Table 1. However, any type descriptor can
have a name (a Pascal string) appended, in which case the size field is larger by the length of the name rounded up to
a multiple of 2.

Enumerated 8-Bit Integer
In the following example of an enumerated 8-bit integer for the items am, fm, and fm stereo, each group of characters
represents a 16-bit word. The space enclosed in quotation marks (" ") represents an ASCII space.

0016 0015 0003 02a m02 fm 09f m" " st er eo

0016 indicates 22 bytes total. 0015 indicates an enumerated 8-bit integer. 0003 indicates there are three items.

Physical Quantity
In the following example of a double-precision physical quantity with units m/s, each group represents a 16-bit word.

000E 001A 0002 0002 FFFF 0003 0001

000E indicates 14 bytes total. 001A indicates this is a double-precision physical quantity. 0002 indicates two
base-exponent pairs. 0002 denotes the seconds base index. FFFF (-1) is the exponent of seconds. 0003 denotes the
meters base index. 0001 is the exponent of meters.

Note LabVIEW stores all physical quantities internally in terms of base units, regardless of the units used
to display them.

Table 2. Nonnumeric Data Types

Data Type
Type Code

(numbers in
hexadecimal)

Type Descriptor (numbers in hexadecimal)

Boolean 21 0004 xx21

String 30 0008 xx30 <dim>

Path 32 0008 xx32 <dim>

Pict 33 0008 xx33 <dim>

Array 40 <nn> xx40 <k> <k dims> <element type descriptor>

Cluster 50 <nn> xx50 <k> <k element type descriptors>

Waveform 54 <nn> xx54 <waveform type> <element type descriptors>

Refnum 70 <nn> <refnum type code><specific type code information>

Variant 53 <nn> xx53

n=length; x=reserved; k=number; k pstrs=number of Pascal strings; k base-exp=number of base-exponent pairs.
A dim is a 32-bit integer. Refer to the following sections of this document for more information.

Application Note 154 12 ni.com

Table 3 shows the nine bases that are represented by indexes 0 through 8 for radians through candela.

String, Path, and Pict Data Types
The string, path, and pict data types have a 32-bit length, similar to the array dimension size. Although the only value
currently encoded is FFFFFFFF (-1), which indicates variable sized. Currently, all strings, paths, and picts are
variable sized. The actual length is stored with the data.

Array and Cluster Data Types
Notice the array and cluster data types each have their own type code. They also contain additional information about
the data types of their elements and the dimensionality for arrays or number of elements for clusters.

Array
The type code for an array is 40. A word that contains the number of dimensions of the array immediately follows the
type code. Then, for each dimension, a 32-bit integer contains the size in elements of that dimension. Finally, after all
of the dimension sizes, the type descriptor for the element appears. The element type can be any type except an array.
Currently all sizes are FFFFFFFF (-1), which means the array dimension size is variable. LabVIEW stores the actual
dimension size, which is always greater than or equal to zero, with the data. The following example is a type descriptor
for a 1D array of double-precision floating-point numbers:

000E 0040 0001 FFFF FFFF 0004 000A

000E is the length of the entire type descriptor, including the element type descriptor. The array is variable sized, so
the dimension size is FFFFFFFF. Notice the element type descriptor (0004 000A) appears exactly as it does for a scalar
of the same type.

The following example is a type descriptor for a 2D array of Boolean values:

0012 0040 0002 FFFF FFFF FFFF FFFF 0004 0021

Table 3. Base Units

Quantity Name Unit Abbreviation Base Value

plane angle radian rad 0

solid angle steradian sr 1

time second s 2

length meter m 3

mass kilogram kg 4

electric current ampere A 5

thermodynamic temperature kelvin K 6

amount of substance mole mol 7

luminous intensity candela cd 8

© National Instruments Corporation 13 Application Note 154

Cluster
The type code for a cluster is 50. A word that contains the number of items in the cluster immediately follows the
typecode. After this word is the type descriptor for each element in cluster order. For example, consider a cluster of
two integers – a signed-16-bit integer and an unsigned 32-bit integer:

000E 0050 0002 0004 0002 0004 0007

000E is the length of the type descriptor including the element type descriptors.

Since array and cluster type descriptors contain other type descriptors, they may become deeply nested. For example,
the following is a type descriptor for a multiplot graph. The numeric types can vary.

0028 0040 0001 FFFF FFFF...1D array of
001E 0050 0001...1 component cluster of
0018 0040 0001 FFFF FFFF...1D array of
000E 0050 0002...2 component cluster of
0004 000A...double-precision floating-point number
0004 0003...32-bit integer

Waveform
The type code for a waveform is 54. A word that contains the type of waveform immediately follows the type code.
After this word is the type descriptor of the cluster of the waveforms elements. There are five categories of waveforms:

• Analog

• Digital

• Digital Table

• Time Stamp

• Dynamic

a. Analog Waveform:

Table 4. Types of Analog Waveforms

Type Subtype Code

16-bit 2

Double-Precision 3

Single-Precision 5

Extended-Precision 10

Unsigned 8-bit 11

Unsigned 16-bit 12

Unsigned 32-bit 13

8-bit 14

32-bit 15

Single-Precision Complex 16

Double-Precision Complex 17

Extended-Precision Complex 18

342012B-01 Apr03
342012B-01

For example, consider a Double-Precision Waveform:

0086 0054 0003...size of waveform, followed by type and subtype code

0080 0050 0005...size of cluster, cluster code, and number of elements

<type descriptor of time stamp>

<type descriptor of dt>

<type descriptor of array of element type>

<type descriptor of unused error cluster>

<type descriptor of attributes>

The type descriptor of the other types of analog waveforms is similar to the Double-Precision waveform. The
difference is a different type for the array element and a different subtype.

b. Digital: There is only one type of digital waveform which has type code 8.

For Example,

00B6 0054 0008...size of digital waveform, type code and subtype code

00B0 0050 0005...size of cluster, cluster code and number of elements

<type descriptor of time stamp>

<type descriptor of dt>

<type descriptor of digital table>

<type descriptor of unused error cluster>

<type descriptor of attributes>

c. Digital Table: There is only one type of digital table which has type code 7.

For example,

003E 0054 0007...size of digital table, type code and subtype code

0038 0050 0002...size of cluster, cluster code and number of elements.

<type descriptor of transitions>

<type descriptor of data>

d. Time Stamp: The time stamp has a subtype code of 6. The time stamp is a 128-bit fixed point number.
LabVIEW stores a time stamp as a cluster of 4 integers where the first two integers (64 bits) represent the
number of whole seconds after 01/01/1904 00:00.00 Universal Time. The next two integers (64 bits) represent
the fractions of seconds.

001C 0054 0006

0016 0050 0004

0004 0003,

0004 0003, ... 64 bits of seconds

0004 0003,

0004 0003... 64 bits of fractions of seconds

e. Dynamic: There is one type of dynamic waveform which has type code 9. Dynamic waveform is a cluster of
an array of analog waveforms.

For Example,

009C 0054 0009...size of dynamic waveform, type code subtype

0096 0050 0001...cluster of one element

0090 0040 0001 FFFF FFFF...array or one element

