Jump to content

Rolf Kalbermatter

Members
  • Posts

    3,765
  • Joined

  • Last visited

  • Days Won

    241

Rolf Kalbermatter last won the day on March 16

Rolf Kalbermatter had the most liked content!

Profile Information

  • Gender
    Male
  • Location
    Netherlands

LabVIEW Information

  • Version
    LabVIEW 2011
  • Since
    1992

Recent Profile Visitors

18,116 profile views

Rolf Kalbermatter's Achievements

  1. That's not how those drivers work. The device drivers for the FTDI chips (the RS-232422/485 at least) installs in Linux as a serial port driver. That means that they get installed as serial ports under /dev, usually as /dev/ttyUSB* with increasing number and can be accessed through NI-VISA just as any other serial port. There is no exported API in these drivers that you can interface to with a Call Library Node. If you want to access the MPSSE engine in those chips (to do bit bang, I2C or SPI for instance) instead of the Virtual Comm Port interface the standard Linux driver provides, you'll have to hunt down the D2XX driver for your Linux distribution and install that instead. https://www.ftdichip.com/old2020/Support/Documents/AppNotes/AN_220_FTDI_Drivers_Installation_Guide_for_Linux.pdf This document is from 2017. Your Linux distribution may have changed things considerably in the meantime, so your mileage may vary, but the general distinction between standard VCP and FTDI proprietary interfaces to the chip through the D2XX driver remains. There exists LabVIEW libraries to interface to the D2XX shared library and also to access the two FTDI provided wrapper libraries to do MPSSE SPI and MPSSE I2C but they are heavily Windows minded, meaning that they try to link to the .DLL version instead of the .so and there might be other API specific details that differ between Windows and Linux. Also last time I checked the two MPSSE VI interfaces here on LAVA were not cleanly prepared to handle 64-bit shared libraries as they were developed when 64-bit LabVIEW was still in its early days and nobody bothered to install and use that.
  2. I would actually suggest to implement it properly by extending the File Dialog Node. A double NULL terminated string array that is simply passed to a Windows API function is hardly a safe and proper LabVIEW datatype! 😁 And of course you saw it already coming, add support for that on Linux too 😁
  3. Not really. And this is a very clear case of using an undocumented and unintended side effect of the implementation. It only worked on Windows and not any other platform and only because the person who implemented the file dialog functionality took a shortcut by passing the LabVIEW string directly to the Windows API without trying to sanitize it. Microsoft discourages the use of the GetOpenFileName and GetSaveName APIs which originate from Windows 3.0 times starting with Windows Vista, and recommends to use the Common Item Dialog instead. My guess is that someone did recently listen to that recommendation and changed the file dialog implementation accordingly. Making sure it works the same way as documented for the old function is already hard enough, trying to also implement undocumented functionality and potential security bugs which this API had, is a bit to much asked.
  4. Welcome back in the community! 🤗
  5. Hi Paul I'm aware of this problem. It has to do with different default fonts in modern Windows machines, which changes the entire text format. The main reason I haven't yet updated the installer was that I was on vacation and there is also a problem to install the package under Linux, which has to do with write permissions to certain file directories. Once I figured that out I will release a new package 5.0.1.
  6. One small correction. The Open VI Reference will block on UI Rootloop even in the first (top) one. The Run Asynchronous method will however not incur a rootloop round trip.
  7. Elemental IO is not a public documented feature. The according project provider knows how to do it but it was never intended to have that interface opened as a user accessible feature. And the main reason is not that NI is evil and wants to deprive you of the fun to thinker with this but because they want to prevent customers to create easily crashing projects that require an immense support demand that NI is not able to fulfill.
  8. This is undocumented territory for sure and as such there is a high chance that: - parts of what you want to do might be obscure and difficult to impossible to find out without the according non-public documentation - it might be present but not implemented, either returning an error or simply doing nothing - it might be simply not possible as the LabVIEW developers haven't found a need for this particular operation yet, and why would they spend time on implementing something that is neither a public function nor required for internal use?
  9. So what is your problem or question? I never said that you can't access the 987x modules from FPGA. But you never specified in your OP that you meant those. As far as scripting these things, it's undocumented territory. And complicated enough that reverse engineering would be a pretty tedious job. Supposedly the C module development Toolkit has some documentation about how so called Elemental IO can be created, but I highly doubt that it documents how that is done through scripting, but it simply provides some tools that do all these things behind the surface. That Toolkit was however not free (~1600 for non-commercial version, 6k for commercial version). The non-commercial version does let you develop your own C modules, but you are not allowed to sell them to others. However it is not anymore findable in the NI store as an order-able product.
  10. Well I'm for sure sure about the built in serial ports on cRIOs and sbRIOs. The987x serial C modules are a different story. And serial ports through USB ports definitely never ever could be just accessed from FPGA mode. You need at least a USB-CDC driver and while that might be possible in FPGA, it is not something that the Xilinx chips that are used on the RIO hardwares would even support, even if you might find some IP design somewhere implementing that. The communication channels such as Ethernet, Uart, USB and similar are NOT directly routable to the FPGA fabric but only accessible through their register interface, which requires a software driver to control them (and an OS on which that driver can be loaded).
  11. A particular device can ONLY be used by one application at any time. Either you can use it on Dasylab or in NI-MAX but not in both at the same time. That is standard procedure. A hardware device is a global resource and two applications trying to do anything on them at the same time will at best produces spaghetti but potentially also crashes.
  12. I think you are confusing an IO signal with a logical interface. The serial port is typically a logical device that contains a TxD and RxD pin and possibly others. On the FPGA you deal exclusively with IO signals. But there is no way to access the serial port as an IO signal. Either you would have to access the individual IO pins that make up the serial port individually and implement the serial port bit protocol yourself in FPGA or you need to access the serial port through the RT OS on the controller as serial port and let the OS driver handle the actual IO control (usually it doesn't really control the IO pins directly but uses a device driver to communicate with the serial port registers).
  13. Just a heads up. I'm working on this including getting more Linux Virtual Machines setup, but it is a slow and tedious process. There seems always something that won't work. LabVIEW installation on non-rpm systems is tedious and often almost impossible, depending on the Linux variant and version. On Fedora 34 the rpm files use a feature that a security fix to the rpm program had disabled and now it complains about invalid rpm files. Updating rpm requires kernel development files installed that can't be installed anymore. Fedora 36 allows installing of the LabVIEW 2014 SP1 that I could organize but LabVIEW segfaults on startup, likely because the kernel, libc or stdlibc is to new for it. Older Fedora images are difficult to get at and even more difficult to install. Open source is nice but the version conflict hell seems to be still as it used to be 15 years ago, where anything but installing from source was a Russian roulette game. So while I'm slowly getting towards something that eventually, hopefully will work, I'm for now going for one week of ski vacation and work on this will have to wait a bit.
  14. I didn't mean to indicate that the SD card is the reason for the lockup, although it is not entirely impossible. But SD cards are not a good solution for anything but occasional data transfer. It is not a question if they will fail, but when!
  15. Yes that is the main problem to support something like this. And no I don't have a 2014 installation either for Linux. I could of course download 2017 SP1, which is the oldest that can be downloaded from the NI site, but I would actually prefer to have a version that was also supporting 32-bit (which 2016 was the latest).
×
×
  • Create New...

Important Information

By using this site, you agree to our Terms of Use.